Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct detection of CH/π interactions in proteins

Abstract

XH/π interactions make important contributions to biomolecular structure and function. These weakly polar interactions, involving π-system acceptor groups, are usually identified from the three-dimensional structures of proteins. Here, nuclear magnetic resonance spectroscopy has been used to directly detect methyl/π (Me/π) interactions in proteins at atomic resolution. Density functional theory calculations predict the existence of weak scalar (J) couplings between nuclei involved in Me/π interactions. Using an optimized isotope-labelling strategy, these J couplings have been detected in proteins using nuclear magnetic resonance spectroscopy. The resulting spectra provide direct experimental evidence of Me/π interactions in proteins and allow a simple and unambiguous assignment of donor and acceptor groups. The use of nuclear magnetic resonance spectroscopy is an elegant way to identify and experimentally characterize Me/π interactions in proteins without the need for arbitrary geometric descriptions or pre-existing three-dimensional structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of Me/π interactions in a database of 183 three-dimensional protein structures (resolution, < 2.0 Å).
Figure 2: DFT analysis of hπJCMeCaro couplings in Me/π interactions in a model system consisting of toluene and ethane.
Figure 3: Exploitation of weak hπJCMeCaro couplings in proteins by NMR spectroscopy.
Figure 4: Exploitation of weak hπJHMeCaro couplings in proteins by NMR spectroscopy.
Figure 5: Plot comparing calculated and observed hπJCMeCaro and hπJHMeCaro couplings.

Similar content being viewed by others

References

  1. Perutz, M. F. The role of aromatic rings as hydrogen-bond acceptors in molecular recognition. Phil. Trans. R. Soc. Lond. A 345, 105–112 (1993).

    Article  CAS  Google Scholar 

  2. Desiraju, G. R. & Steiner, T. The Weak Hydrogen Bond (Oxford Univ. Press, 1999).

    Google Scholar 

  3. Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. 42, 1210–1250 (2003).

    Article  CAS  Google Scholar 

  4. Suzuki, S. et al. Benzene forms hydrogen bonds with water. Science 257, 942–945 (1992).

    Article  CAS  Google Scholar 

  5. Rodham, D. A. et al. Hydrogen bonding in the benzene–ammonia dimer. Nature 362, 735–737 (1993).

    Article  CAS  Google Scholar 

  6. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. Origin of the attraction and directionality of the NH/π interaction: comparison with OH/π and CH/π interactions. J. Am. Chem. Soc. 122, 11450–11458 (2000).

    Article  CAS  Google Scholar 

  7. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Tanabe, K. The magnitude of the CH/π interaction between benzene and some model hydrocarbons. J. Am. Chem. Soc. 122, 3746–3753 (2000).

    Article  CAS  Google Scholar 

  8. Burley, S. K. & Petsko, G. A. Amino–aromatic interactions in proteins. FEBS Lett. 203, 139–143 (1986).

    Article  CAS  Google Scholar 

  9. Steiner, T. & Koellner, G. Hydrogen bonds with π-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J. Mol. Biol. 305, 535–557 (2001).

    Article  CAS  Google Scholar 

  10. Brandl, M., Weiss, M. S., Jabs, A., Suhnel, J. & Hilgenfeld, R. C–H···π-interactions in proteins. J. Mol. Biol. 307, 357–377 (2001).

    Article  CAS  Google Scholar 

  11. Dingley, A. J. & Grzesiek, S. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2JNN couplings J. Am. Chem. Soc. 120, 8293–8297 (1998).

    Article  CAS  Google Scholar 

  12. Pervushin, K. et al. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy. Proc. Natl Acad. Sci. USA 95, 14147–14151 (1998).

    Article  CAS  Google Scholar 

  13. Cordier, F. & Grzesiek, S. Direct observation of hydrogen bonds in proteins by interresidue 3hJNC' scalar couplings. J. Am. Chem. Soc. 121, 1601–1602 (1999).

    Article  CAS  Google Scholar 

  14. Grzesiek, S., Cordier, F., Jaravine, V. & Barfield, M. Insights into biomolecular hydrogen bonds from hydrogen bond scalar couplings. Prog. Nucl. Magn. Reson. Spectrosc. 45, 275–300 (2004).

    Article  CAS  Google Scholar 

  15. Cordier, F., Barfield, M. & Grzesiek, S. Direct observation of Cα–Hα···O=C hydrogen bonds in proteins by interresidue h3JCαC' scalar couplings. J. Am. Chem. Soc. 125, 15750–15751 (2003).

    Article  CAS  Google Scholar 

  16. Vijay-Kumar, S., Bugg, C. E. & Cook, W. J. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194, 531–544 (1987).

    Article  CAS  Google Scholar 

  17. Cornilescu, G., Marquardt, J. L., Ottiger, M. & Bax, A. Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase. J. Am. Chem. Soc. 120, 6836–6837 (1998).

    Article  CAS  Google Scholar 

  18. Derrick, J. P. & Wigley, D. B. The third IgG-binding domain from streptococcal protein G. An analysis by X-ray crystallography of the structure alone and in a complex with Fab. J. Mol. Biol. 243, 906–918 (1994).

    Article  CAS  Google Scholar 

  19. Ulmer, T. S., Ramirez, B. E., Delaglio, F. & Bax, A. Evaluation of backbone proton positions and dynamics in a small protein by liquid crystal NMR spectroscopy. J. Am. Chem. Soc. 125, 9179–9191 (2003).

    Article  CAS  Google Scholar 

  20. Gans, P. et al. Stereospecific isotopic labeling of methyl groups for the NMR studies of high molecular weight proteins. Angew. Chem. Int. Ed. 49, 1958–1962 (2010).

    Article  CAS  Google Scholar 

  21. Nadaud, P. S., Helmus, J. J. & Jaroniec, C.P. 13C and 15N chemical shift assignments and secondary structure of the B3 immunoglobulin-binding domain of streptococcal protein G by magic-angle spinning solid-state NMR spectroscopy. Biomol. NMR Assign. 1, 117–120 (2007).

    Article  CAS  Google Scholar 

  22. Miclet, E., Boisbouvier, J. & Bax, A. Measurement of eight scalar and dipolar couplings for methine–methylene pairs in proteins and nucleic acids. J. Biomol. NMR 31, 201–216 (2005).

    Article  CAS  Google Scholar 

  23. Mitchell, J. B., Nandi, C. L., McDonald, I. K., Thornton, J. M. & Price, S. L. Amino/aromatic interactions in proteins: is the evidence stacked against hydrogen bonding? J. Mol. Biol. 239, 315–331 (1994).

    Article  CAS  Google Scholar 

  24. Weiss, M. S., Brandl, M., Suhnel, J., Pal, D. & Hilgenfeld, R. More hydrogen bonds for the (structural) biologist. Trends Biochem. Sci. 26, 521–523 (2001).

    Article  CAS  Google Scholar 

  25. Tsuzuki, S., Honda, K., Uchimaru, T., Mikami, M. & Fujii, A. Magnitude and directionality of the interaction energy of the aliphatic CH/π interaction: significant difference from hydrogen bond. J. Phys. Chem. 110, 10163–10168 (2006).

    Article  CAS  Google Scholar 

  26. Dougherty, D. A. Cation–π interactions in chemistry and biology: a new view of benzene, Phe, Tyr and Trp. Science 271, 163–168 (1996).

    Article  CAS  Google Scholar 

  27. Umezawa, Y. & Nishio, M. CH/π interactions in the crystal structure of class I MHC antigens and their complexes with peptides. Bioorg. Med. Chem. 6, 2507–2515 (1998).

    Article  CAS  Google Scholar 

  28. Umezawa, Y. & Nishio, M. CH/π interactions as demonstrated in the crystal structure of guanine-nucleotide binding proteins, Src homology-2 domains and human growth hormone in complex with their specific ligands. Bioorg. Med. Chem. 6, 493–504 (1998).

    Article  CAS  Google Scholar 

  29. Wang, G. & Dunbrack, R. L. Jr. PISCES: a protein sequence culling server. Bioinformatics 19, 1589–1591 (2003).

    Article  CAS  Google Scholar 

  30. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  31. Frisch, M. J. et al. Gaussian 03, Revision C.02. (Gaussian, 2003).

    Google Scholar 

  32. Sass, J. et al. Purple membrane induced alignment of biological macromolecules in the magnetic field. J. Am. Chem. Soc. 121, 2047–2055 (1999).

    Article  CAS  Google Scholar 

  33. Markley, J. L. et al. Recommendations for the presentation of NMR structures of proteins and nucleic acids. IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy. J. Biomol. NMR 12, 1–23 (1998).

    Article  CAS  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank O. Hamlin and P. Gans for providing labelled acetolactate, B. Brutscher, J.-P. Simorre and D. Marion for a critical reading of the manuscript, I. Ayala for help in preparing protein samples, and the Partnership for Structural Biology for access to integrated structural biology platforms. The clone of GB3 was kindly provided by A. Bax and that of ubiquitin by S. Grzesiek. M.J.P. acknowledges funding from L'Association pour la Recherche sur le Cancer and the EU (FP7-PEOPLE-IRG-2008), J.B. acknowledges funding from Agence Nationale de la Recherche, Human Frontiers Science Programme and Centre National de la Recherche Scientifique, and D.L.B. acknowledges the Natural Sciences and Engineering Research Council of Canada and the High-Performance Virtual Computing Laboratory.

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived and devised the experiments, and co-wrote the manuscript. M.J.P. prepared samples. M.J.P. and J.B. recorded and analysed the NMR data. D.L.B. performed and analysed the DFT calculations.

Corresponding authors

Correspondence to Michael J. Plevin, David L. Bryce or Jérôme Boisbouvier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plevin, M., Bryce, D. & Boisbouvier, J. Direct detection of CH/π interactions in proteins. Nature Chem 2, 466–471 (2010). https://doi.org/10.1038/nchem.650

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.650

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing