Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction

Abstract

The facile decomposition of ammonia to produce hydrogen is critical to its use as a hydrogen storage medium in a hydrogen economy, and although ruthenium shows good activity for catalysing this process, its expense and scarcity are prohibitive to large-scale commercialization. The need to develop alternative catalysts has been addressed here, using microkinetic modelling combined with density functional studies to identify suitable monolayer bimetallic (surface or subsurface) catalysts based on nitrogen binding energies. The Ni–Pt–Pt(111) surface, with one monolayer of Ni atoms residing on a Pt(111) substrate, was predicted to be a catalytically active surface. This was verified using temperature-programmed desorption and high-resolution electron energy loss spectroscopy experiments. The results reported here provide a framework for complex catalyst discovery. They also demonstrate the critical importance of combining theoretical and experimental approaches for identifying desirable monolayer bimetallic systems when the surface properties are not a linear function of the parent metals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ammonia decomposition volcano curve.
Figure 2: Normalized sensitivity coefficients of the kinetically significant elementary reaction steps for each monometallic metal.
Figure 3: Ammonia decomposition on different Ni–Pt surfaces.
Figure 4: TPD spectra of nitrogen desorption from a Ni–Pt–Pt surface after dosing 3 L ammonia at the specified temperature.

Similar content being viewed by others

References

  1. Ganley, J. C., Thomas, F. S., Seebauer, E. G. & Masel, R. I. A priori catalytic activity correlations: the difficult case of hydrogen production from ammonia. Catal. Lett. 96, 117–122 (2004).

    Article  CAS  Google Scholar 

  2. Choudhary, T. V., Sivadinarayana, C. & Goodman, D. W. Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications. Catal. Lett. 72, 197–201 (2001).

    Article  CAS  Google Scholar 

  3. Yin, S. F. et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia. J. Catal. 224, 384–396 (2004).

    Article  CAS  Google Scholar 

  4. Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    Article  CAS  Google Scholar 

  5. Boisen, A., Dahl, S., Norskov, J. K. & Christensen, C. H. Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst. J. Catal. 230, 309–312 (2005).

    Article  CAS  Google Scholar 

  6. Campbell, C. T. Bimetallic surface-chemistry. Annu. Rev. Phys. Chem. 41, 775–837 (1990).

    Article  CAS  Google Scholar 

  7. Tao, F. et al. Reaction-driven restructuring of Rh–Pd and Pt–Pd core–shell nanoparticles. Science 322, 932–934 (2008).

    Article  CAS  Google Scholar 

  8. Ruban, A. V., Skriver, H. L. & Norskov, J. K. Surface segregation energies in transition-metal alloys. Phys. Rev. B 59, 15990–16000 (1999).

    Article  Google Scholar 

  9. Menning, C. A. & Chen, J. G. General trend for adsorbate-induced segregation of subsurface metal atoms in bimetallic surfaces. J. Chem. Phys. 130, 174709 (2009).

    Article  Google Scholar 

  10. Kitchin, J. R., Reuter, K. & Scheffler, M. Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys. Rev. B 77, 075437 (2008).

    Article  Google Scholar 

  11. Ma, Y. G. & Balbuena, P. B. Pt surface segregation in bimetallic Pt3M alloys: a density functional theory study. Surf. Sci. 602, 107–113 (2008).

    Article  CAS  Google Scholar 

  12. Chen, J. G., Menning, C. A. & Zellner, M. B. Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf. Sci. Rep. 63, 201–254 (2008).

    Article  CAS  Google Scholar 

  13. Pallassana, V., Neurock, M., Hansen, L. B., Hammer, B. & Norskov, J. K. Theoretical analysis of hydrogen chemisorption on Pd(111), Re(0001) and Pd-ML/Re(0001), Re-ML/Pd(111) pseudomorphic overlayers. Phys. Rev. B 60, 6146–6154 (1999).

    Article  CAS  Google Scholar 

  14. Rodriguez, J. A. & Goodman, D. W. The nature of the metal metal bond in bimetallic surfaces. Science 257, 897–903 (1992).

    Article  CAS  Google Scholar 

  15. Mhadeshwar, A. B., Kitchin, J. R., Barteau, M. A. & Vlachos, D. G. The role of adsorbate−adsorbate interactions in the rate controlling step and the most abundant reaction intermediate of NH3 decomposition on Ru. Catal. Lett. 96, 13–22 (2004).

    Article  CAS  Google Scholar 

  16. Shustorovich, E. & Sellers, H. The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces. Surf. Sci. Rep. 31, 5–119 (1998).

    Article  Google Scholar 

  17. Campbell, C. T. Finding the rate-determining step in a mechanism—comparing DeDonder relations with the ‘degree of rate control’. J. Catal. 204, 520–524 (2001).

    Article  CAS  Google Scholar 

  18. Campbell, C. T. Micro- and macro-kinetics: their relationship in heterogeneous catalysis. Top. Catal. 1, 353–366 (1994).

    Article  CAS  Google Scholar 

  19. Menning, C. A., Hwu, H. H. & Chen, J. G. Experimental and theoretical investigation of the stability of Pt–3d–Pt(111) bimetallic surfaces under oxygen environment. J. Phys. Chem. B 110, 15471–15477 (2006).

    Article  CAS  Google Scholar 

  20. Humbert, M. P. & Chen, J. G. Correlating hydrogenation activity with binding energies of hydrogen and cyclohexene on M/Pt(111) (M=Fe, Co, Ni, Cu) bimetallic surfaces. J. Catal. 257, 297–306 (2008).

    Article  CAS  Google Scholar 

  21. Kitchin, J. R., Norskov, J. K., Barteau, M. A. & Chen, J. G. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys. Rev. Lett. 93, 156801 (2004).

    Article  CAS  Google Scholar 

  22. Kitchin, J. R. et al. Elucidation of the active surface and origin of the weak metal–hydrogen bond on Ni/Pt(111) bimetallic surfaces: a surface science and density functional theory study. Surf. Sci. 544, 295–308 (2003).

    Article  CAS  Google Scholar 

  23. Khan, N. A., Hwu, H. H. & Chen, J. G. Low-temperature hydrodesulfurization of thiophene on Ni/Pt(111) bimetallic surfaces with monolayer Ni coverage. J. Catal. 205, 259–265 (2002).

    Article  CAS  Google Scholar 

  24. Sun, Y. M., Sloan, D., Ihm, H. & White, J. M. Electron-induced surface chemistry: production and characterization of NH2 and NH species on Pt(111). J. Vac. Sci. Technol. A 14, 1516–1521 (1996).

    Article  CAS  Google Scholar 

  25. Skoplyak, O., Barteau, M. A. & Chen, J. G. Reforming of oxygenates for H2 production: correlating reactivity of ethylene glycol and ethanol on Pt(111) and Ni/Pt(111) with surface d-band center. J. Phys. Chem. B 110, 1686–1694 (2006).

    Article  CAS  Google Scholar 

  26. Dietrich, H., Jacobi, K. & Ertl, G. Coverage, lateral order and vibrations of atomic nitrogen on Ru(0001). J. Chem. Phys. 105, 8944–8950 (1996).

    Article  CAS  Google Scholar 

  27. Gardin, D. E., Batteas, J. D., Vanhove, M. A. & Somorjai, G. A. Carbon, nitrogen, and sulfur on Ni(111)—formation of complex structures and consequences for molecular decomposition. Surf. Sci. 296, 25–35 (1993).

    Article  CAS  Google Scholar 

  28. Kim, Y. K., Morgan, G. A. & Yates, J. T. Site-specific dissociation of N2 on the stepped Ru(109) surface. Surf. Sci. 598, 14–21 (2005).

    Article  CAS  Google Scholar 

  29. Dietrich, H., Jacobi, K. & Ertl, G. Decomposition of NH3 on Ru(11(2)–1). Surf. Sci. 352, 138–141 (1996).

    Article  Google Scholar 

  30. Dietrich, H., Jacobi, K. & Ertl, G. Vibrations, coverage, and lateral order of atomic nitrogen and formation of NH3 on Ru(10(1)–0). J. Chem. Phys. 106, 9313–9319 (1997).

    Article  CAS  Google Scholar 

  31. Menning, C. A. & Chen, J. G. Thermodynamics and kinetics of oxygen-induced segregation of 3d metals in Pt–3d–Pt(111) and Pt–3d–Pt(100) bimetallic structures. J. Chem. Phys. 128, 174709 (2008).

    Article  Google Scholar 

  32. Menning, C. A. & Chen, J. G. Regenerating Pt–3d–Pt model electrocatalysts through oxidation–reduction cycles monitored at atmospheric pressure. J. Power Sources 195, 3140–3144 (2010).

    Article  CAS  Google Scholar 

  33. Lu, S. L. et al. Low temperature hydrogenation of benzene and cyclohexene: a comparative study between gamma-Al2O3 supported PtCo and PtNi bimetallic catalysts. J. Catal. 259, 260–268 (2008).

    Article  CAS  Google Scholar 

  34. Humbert, M. P., Murillo, L. E. & Chen, J. G. Rational design of platinum-based bimetallic catalysts with enhanced hydrogenation activity. ChemPhysChem 9, 1262–1264 (2008).

    Article  CAS  Google Scholar 

  35. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  36. Kresse, G. & Furthmuller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized Eigenvalue formalism. Phys. Rev. B 41, 7892–7895 (1990).

    Article  CAS  Google Scholar 

  38. Perdew, J. P. et al. Atoms, molecules, solids and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  39. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  40. Pseudopotential Library. Center for Atomic-Scale Materials Design. https://wiki.fysik.dtu.dk/dacapo/Pseudopotential_Library.

  41. Catlett, C. et al. TeraGrid: analysis of organization, system architecture, and middleware enabling new types of applications, in HPC and Grids in Action (Grandinetti, L. ed.) ‘Advances in Parallel Computing’ series (IOS Press, 2007).

Download references

Acknowledgements

This research was supported by the Office of Basic Energy Sciences, Department of Energy grants DE-FG02-06ER15795 and DE-FG02-00ER15104. The DFT calculations were performed using the TeraGrid resources provided by the University of Illinois National Center for Supercomputing Applications (NCSA)41.

Author information

Authors and Affiliations

Authors

Contributions

D.A.H. and D.G.V. designed and developed the microkinetic models. D.A.H. and J.G.C. designed and developed the UHV experiments. D.A.H. performed and analysed all modelling and experimental work. All authors contributed to writing the paper.

Corresponding authors

Correspondence to Dionisios G. Vlachos or Jingguang G. Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansgen, D., Vlachos, D. & Chen, J. Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction. Nature Chem 2, 484–489 (2010). https://doi.org/10.1038/nchem.626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.626

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing