Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages

This article has been updated

Abstract

Metal–organic frameworks form a unique class of multifunctional hybrid materials and have myriad applications, including gas storage and catalysis. Their structure is usually achieved through the infinite coordination of metal ions and multidentate organic ligands by means of strong covalent bonds. Threaded molecules such as catenanes and rotaxanes have largely been restricted to comprising components of two-dimensional interlocking rings or polygons. There are very few examples of the catenation of polyhedral cages. Although it has been postulated that the infinite extended architecture can be obtained from the polycatenation of a discrete cage based on such threading, this has not been documented to date. Here we describe an infinite three-dimensional metal–organic framework composed of catenated polyhedral cages, in which the framework is achieved by mechanical interlocking of all of the vertices of the cages. The three-dimensional polycatenated framework shows twofold self-interpenetration in its crystal packing. The penetration of polycatenanes creates nanosized voids into which the Keggin polyoxometalate anions are perfectly accommodated as counteranions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the details of the adamantane-like {Ag24(trz)18}6+ nanocage.
Figure 5: Arrangement of polyoxometalates and {Ag24(trz)18}6+ nanocages.
Figure 2: Schematic representation of the overall structure of the polycatenanes in 1 from a discrete {Ag24(trz)18}6+ nanocage to three-dimensional infinite polycatenation.
Figure 3: Supramolecular architecture of adjacent interlocking {Ag24(trz)18}6+ nanocages.
Figure 4: Topological views of the twofold interpenetration of the polycatenation in 1.

Similar content being viewed by others

Change history

  • 24 May 2010

    An incorrect version of Fig. 1 appeared temporarily in this HTML Article in the June issue. This has now been corrected; it is correct in the PDF and in print.

References

  1. Balzani, V., Credi, A. & Venturi, M. Molecular Devices and Machines—Concepts and Perspectives for the Nanoworld (Wiley-VCH, 2008).

  2. Balzani, V., Credi, A., Raymo, F. M. & Stoddart, J. F. Artificial molecular machines. Angew. Chem. Int. Ed. 39, 3348–3391 (2000).

    Article  CAS  Google Scholar 

  3. Hernández, J. V., Kay, E. R. & Leigh, D. A. A reversible synthetic rotary molecular motor. Science 306, 1532–1537 (2004).

    Article  Google Scholar 

  4. Wang, L., Vysotsky, M. O., Bogdan, A., Bolte, M. & Böhmer, V. Multiple catenanes derived from calix[4]arenes. Science 304, 1312–1314 (2004).

    Article  CAS  Google Scholar 

  5. Serreli, V., Lee, C.-F., Kay, E. R. & Leigh, D. A. A molecular information ratchet. Nature 445, 523–527 (2007).

    Article  CAS  Google Scholar 

  6. Flood, A. H., Stoddart, J. F., Steuerman, D. W. & Heath, J. R. Whence molecular electronics? Science 306, 2055–2056 (2004).

    Article  Google Scholar 

  7. Balzani, V., Credi, A. & Venturi, M. Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009).

    Article  CAS  Google Scholar 

  8. Mullen, K. M. & Beer, P. D. Sulfate anion templation of macrocycles, capsules, interpenetrating and interlocked structures. Chem. Soc. Rev. 38, 1701–1713 (2009).

    Article  CAS  Google Scholar 

  9. Lehn, J.-M. Toward self-organization and complex matter. Science 295, 2400–2403 (2002).

    Article  CAS  Google Scholar 

  10. Reinhoudt, D. N. & Crego-Calama, M. Synthesis beyond the molecule. Science 295, 2403–2407 (2002).

    Article  CAS  Google Scholar 

  11. Ikkala, O. & Brinke, G. Functional materials based on self-assembly of polymeric supramolecules. Science 295, 2407–2409 (2002).

    Article  CAS  Google Scholar 

  12. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  CAS  Google Scholar 

  13. Stoddart, J. F. The chemistry of mechanical bond. Chem. Soc. Rev. 38, 1802–1820 (2009).

    Article  CAS  Google Scholar 

  14. Wikoff, W. R. et al. Topologically linked protein rings in the bacteriophage HK97 capsid. Science 289, 2129–2133 (2000).

    Article  CAS  Google Scholar 

  15. Rybenkov, V. V., Ullsperger, C., Vologodskii, A.V. & Cozzarelli, N. R. Simplification of DNA topology below equilibrium values by type II topoisomerases. Science 277, 690–693 (1997).

    Article  CAS  Google Scholar 

  16. Fuller, A.-M. L., Leigh, D. A., Lusby, P. J., Slawin, A. M. Z. & Walker, D. B. Selecting topology and connectivity through metal-directed macrocyclization reactions: a square planar palladium [2]catenate and two noninterlocked isomers. J. Am. Chem. Soc. 127, 12612–12619 (2005).

    Article  CAS  Google Scholar 

  17. Fujita, M., Fujita, N., Ogura, K. & Yamaguchi, K. Spontaneous assembly of ten components into two interlocked, identical coordination cages. Nature 400, 52–55 (1999).

    Article  CAS  Google Scholar 

  18. Westcott, A., Fisher, J., Harding, L. P., Rizkallah, P. & Hardie, M. J. Self-assembly of a 3-D triply interlocked chiral [2]catenane. J. Am. Chem. Soc. 130, 2950–2951 (2008).

    Article  CAS  Google Scholar 

  19. Saalfrank, R. W., Stark, A., Peters, K. & Schnering, H. G. The first ‘adamantoid’ alkaline earth metal chelate complex: synthesis, structure, and reactivity. Angew. Chem. Int. Ed. Engl. 27, 851–853 (1988).

    Article  Google Scholar 

  20. Beissel, T., Powers, R. E. & Raymond, K. N. Symmetry-based metal complex cluster formation. Angew. Chem. Int. Ed. Engl. 35, 1084–1086 (1996).

    Article  CAS  Google Scholar 

  21. Fujita, M., Tominaga, M., Hori, A. & Therrien, B. Coordination assemblies from a Pd (II)-cornered square complex. Acc. Chem. Res. 38, 371–380 (2005).

    Article  Google Scholar 

  22. Leininger, S., Olenyuk, B. & Stang, P. J. Self-assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev. 100, 853–908 (2000).

    Article  CAS  Google Scholar 

  23. Seidel, S. R. & Stang, P. J. High-symmetry coordination cage via self-assembly. Acc. Chem. Res. 35, 972–983 (2002).

    Article  CAS  Google Scholar 

  24. Cotton, F. A., Murillo, C. A. & Yu, R. Deliberate synthesis of the preselected enantiomer of an enantiorigid molecule with pure rotational symmetry T. Dalton Trans. 3161–3165 (2005).

  25. Tranchemontagne, D. J., Ni, Z., O'Keeffe, M. & Yaghi, O. M. Reticular chemistry of metal–organic polyhedra. Angew. Chem. Int. Ed. 47, 5136–5147 (2008).

    Article  CAS  Google Scholar 

  26. Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).

    Article  CAS  Google Scholar 

  27. Zhai, Q.-G., Wu, X.-Y., Chen, S.-M., Zhao, Z.-G. & Lu, C.-Z. Construction of Ag/1,2,4-triazole/polyoxometalates hybrid family varying from diverse supramolecular assemblies to 3-D rod-packing framework. Inorg. Chem. 46, 5046–5058 (2007).

    Article  CAS  Google Scholar 

  28. Fujita, M. et al. Self-assembly of ten molecules into nanometre-sized organic host frameworks. Nature 378, 469–471 (1995).

    Article  CAS  Google Scholar 

  29. Lu, J. et al. Octapi interactions: self-assembly of a Pd-based [2]catenane driven by eightfold π interactions. J. Am. Chem. Soc. 131, 10372–10373 (2009).

    Article  CAS  Google Scholar 

  30. Codina, A. et al. Do aurophilic interactions compete against hydrogen bonds? Experimental evidence and rationalization based on ab initio calculations. J. Am. Chem. Soc. 124, 6781–6786 (2002).

    Article  CAS  Google Scholar 

  31. Zhang, J.-P., Lin, Y.-Y., Huang, X.-C. & Chen, X.-M. Copper (I) 1,2,4-triazolates and related complexes: studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties. J. Am. Chem. Soc. 127, 5495–5506 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 Key Program of the Ministry of Science and Technology of China (2006CB932904, 2007CB815304 and 2010CB933501), the National Natural Science Foundation of China (20873150, 50772113, 20821061 and 20973173), the Chinese Academy of Sciences (KJCX2-YW-M05, 319) and the National Science Foundation (CHE-0845829; J.P.D.).

Author information

Authors and Affiliations

Authors

Contributions

X.K. and C.Z.L. conceived and designed the experiments. X.K. performed the experimental work. X.K., X.W., R.Y., J.H. and C.Z.L. analysed the X-ray structural data and interpreted the results. C.Z.L. was responsible for the overall design, direction and supervision of the project. X.K., R.Y., J.P.D. and C.Z.L. co-wrote the paper.

Corresponding author

Correspondence to Can-Zhong Lu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 891 kb)

Supplementary information

Crystallographic data for compound 1 (CIF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuang, X., Wu, X., Yu, R. et al. Assembly of a metal–organic framework by sextuple intercatenation of discrete adamantane-like cages. Nature Chem 2, 461–465 (2010). https://doi.org/10.1038/nchem.618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing