Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics

Abstract

Porous coordination polymers, in particular flexible porous coordination polymer networks that change their network structure on guest adsorption, have enormous potential in applications involving selective storage, separation and sensing. Despite the expected significant differences in their adsorption properties, porous coordination polymer nanocrystals remain largely unexplored, and there have been no reports about studies on flexible porous coordination polymer nanocrystals, mainly due to a lack of preparation methods. Here, we present a new technique for the rapid preparation of porous coordination polymer nanocrystals that combines non-aqueous inverse microemulsion with ultrasonication. Uniform nanocrystals of {[Zn(ip)(bpy)]}n (ip = isophthalate, bpy = 4,4′-bipyridyl; CID-1), a flexible porous coordination polymer, have been prepared by this method and analysed using field-emission scanning electron microscopy, energy-dispersive X-ray analysis, infrared spectroscopy, Raman spectroscopy and X-ray powder diffraction. A model for particle formation and growth is presented and discussed. Adsorption experiments with methanol show that the overall adsorption capacities of nanoparticles and bulk are almost identical, but the shapes of the sorption isotherms differ significantly and the adsorption kinetics increase dramatically.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of CID-1 and FE-SEM images of coordination compounds obtained by various reaction processes.
Figure 2: FE-SEM images of NCID-1b–g.
Figure 3: XRPD patterns of bulk-CID-1 and NCID-1a in different states.
Figure 4: Model for PCP nanoparticle formation and growth.
Figure 5: Gas adsorption properties of bulk-CID-1 and NCID-1a.

Similar content being viewed by others

References

  1. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  2. Mueller, U. et al. Metal–organic frameworks—prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).

    Article  CAS  Google Scholar 

  3. Rosseinsky, M. J. Recent developments in metal–organic framework chemistry: design, discovery, permanent porosity and flexibility. Microporous Mesoporous Mater. 73, 15–30 (2004).

    Article  CAS  Google Scholar 

  4. Maspoch, D., Ruiz-Molina, D. & Veciana, J. Magnetic nanoporous coordination polymers. J. Mater. Chem. 14, 2713–2723 (2004).

    Article  CAS  Google Scholar 

  5. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  6. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  7. Zacher, D., Shekhah, O., Woell, C. & Fischer, R. A. Thin films of metal–organic frameworks. Chem. Soc. Rev. 38, 1418–1429 (2009).

    Article  CAS  Google Scholar 

  8. Furukawa, S. et al. Heterogeneously hybridized porous coordination polymer crystals: fabrication of heterometallic core–shell single crystals with an in-plane rotational epitaxial relationship. Angew. Chem. Int. Ed. 48, 1766–1770 (2009).

    Article  CAS  Google Scholar 

  9. Gadzikwa, T. et al. Covalent surface modification of a metal–organic framework: selective surface engineering via Cu(I)-catalyzed Huisgen cycloaddition. Chem. Commun. 5493–5495 (2008).

  10. McHale, J. M., Auroux, A., Perrotta, A. J. & Navrotsky, A. Surface energies and thermodynamic phase stability in nanocrystalline aluminas. Science 277, 788–791 (1997).

    Article  CAS  Google Scholar 

  11. Zhang, H. Z., Gilbert, B., Huang, F. & Banfield, J. F. Water-driven structure transformation in nanoparticles at room temperature. Nature 424, 1025–1029 (2003).

    Article  CAS  Google Scholar 

  12. Czaja, A. U., Trukhan, N. & Mueller, U. Industrial applications of metal–organic frameworks. Chem. Soc. Rev. 38, 1284–1293 (2009).

    Article  CAS  Google Scholar 

  13. Lin, W., Rieter, W. J. & Taylor, K. M. L. Modular synthesis of functional nanoscale coordination polymers. Angew. Chem. Int. Ed. 48, 650–658 (2009).

    Article  CAS  Google Scholar 

  14. Spokoyny, A. M., Kim, D., Sumrein, A. & Mirkin, C. A. Infinite coordination polymer nano- and microparticle structures. Chem. Soc. Rev. 38, 1218–1227 (2009).

    Article  CAS  Google Scholar 

  15. Ni, Z. & Masel, R. I. Rapid production of metal–organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006).

    Article  CAS  Google Scholar 

  16. Zong-Qun Li, L.-G. Q. et al. Ultrasonic synthesis of the microporous metal–organic framework Cu3(BTC)2 at ambient temperature and pressure: an efficient and environmentally friendly method. Mater. Lett. 63, 78–80 (2009).

    Article  Google Scholar 

  17. Rieter, W. J., Taylor, K. M. L., An, H., Lin, W. & Lin, W. Nanoscale metal–organic frameworks as potential multimodal contrast enhancing agents. J. Am. Chem. Soc. 128, 9024–9025 (2006).

    Article  CAS  Google Scholar 

  18. Taylor, K. M. L., Jin, A. & Lin, W. Surfactant-assisted synthesis of nanoscale gadolinium metal–organic frameworks for potential multimodal imaging. Angew. Chem. Int. Ed. 47, 7722–7725 (2008).

    Article  CAS  Google Scholar 

  19. Hermes, S. et al. Trapping metal–organic framework nanocrystals: an in situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 129, 5324–5325 (2007).

    Article  CAS  Google Scholar 

  20. Tsuruoka, T. et al. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angew. Chem. Int. Ed. 48, 4739–4743 (2009).

    Article  CAS  Google Scholar 

  21. Férey, G. & Serre, C. Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. Chem. Soc. Rev. 38, 1380–1399 (2009).

    Article  Google Scholar 

  22. Bradshaw, D., Warren, J. E. & Rosseinsky, M. J. Reversible concerted ligand substitution at alternating metal sites in an extended solid. Science 315, 977–980 (2007).

    Article  CAS  Google Scholar 

  23. Suh, M. P. & Cheon, Y. E. Recent advances in the dynamics of single crystal to single crystal transformations in metal–organic open frameworks. Aust. J. Chem. 59, 605–612 (2006).

    Article  CAS  Google Scholar 

  24. Kepert, C. J. Advanced functional properties in nanoporous coordination framework materials. Chem. Commun. 695–700 (2006).

  25. Fletcher, A. J., Thomas, K. M. & Rosseinsky, M. J. Flexibility in metal–organic framework materials: impact on sorption properties. J. Solid State Chem. 178, 2491–2510 (2005).

    Article  CAS  Google Scholar 

  26. Uemura, K., Matsuda, R. & Kitagawa, S. Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005).

    Article  CAS  Google Scholar 

  27. Kondo, A. et al. Double-step gas sorption of a two-dimensional metal–organic framework. J. Am. Chem. Soc. 129, 12362–13263 (2007).

    Article  CAS  Google Scholar 

  28. Llewellyn, P. L., Bourrelly, S., Serre, C., Filinchuk, Y. & Férey, G. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angew. Chem. Int. Ed. 45, 7751–7754 (2006).

    Article  CAS  Google Scholar 

  29. Li, J. R., Kuppler, R. J. & Zhou, H. C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  30. Tanaka, D. & Kitagawa, S. Template effects in porous coordination polymers. Chem. Mater. 20, 922–931 (2008).

    Article  CAS  Google Scholar 

  31. Horcajada, P. et al. Flexible porous metal–organic frameworks for a controlled drug delivery. J. Am. Chem. Soc. 130, 6774–6780 (2008).

    Article  CAS  Google Scholar 

  32. Tanaka, D. et al. Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47, 3914–3918 (2008).

    Article  CAS  Google Scholar 

  33. Uemura, T., Hoshino, Y., Kitagawa, S., Yoshida, K. & Isoda, S. Effect of organic polymer additive on crystallization of porous coordination polymer. Chem. Mater. 18, 992–995 (2006).

    Article  CAS  Google Scholar 

  34. Horcajada, P. et al. Colloidal route for preparing optical thin films of nanoporous metal–organic frameworks. Adv. Mater. 21, 1931–1935 (2009).

    Article  CAS  Google Scholar 

  35. Farha, O. K. et al. Gas-sorption properties of cobalt(II)–carborane-based coordination polymers as a function of morphology. Small 5, 1727–1731 (2009).

    Article  CAS  Google Scholar 

  36. Lee, H. J., Cho, W., Jung, S. & Oh, M. Morphology-selective formation and morphology-dependent gas-adsorption properties of coordination polymer particle. Adv. Mater. 21, 674–677 (2008).

    Article  Google Scholar 

  37. Horike, S., Tanaka, D., Nakagawa, K. & Kitagawa, S. Selective guest sorption in an interdigitated porous framework with hydrophobic pore surfaces. Chem. Commun. 3395–3397 (2007).

  38. Riter, R. E., Kimmel, J. R., Undiks, E. P. & Levinger, N. E. Novel reverse micelles partitioning nonaqueous polar solvents in a hydrocarbon continuous phase. J. Phys. Chem. B 101, 8292–8297 (1997).

    Article  CAS  Google Scholar 

  39. Novaira, M., Moyano, F., Biasutti, M. A., Silber, J. J. & Correa, N. M. An example of how to use AOT reverse micelle interfaces to control a photoinduced intramolecular charge-transfer process. Langmuir 24, 4637–4646 (2008).

    Article  CAS  Google Scholar 

  40. Vaucher, S., Fielden, J., Li, M., Dujardin, E. & Mann, S. Molecule-based magnetic nanoparticles: synthesis of cobalt hexacyanoferrate, cobalt pentacyanonitrosylferrate, and chromium hexacyanochromate coordination polymers in water-in-oil microemulsions. Nano Lett. 2, 225–229 (2002).

    Article  CAS  Google Scholar 

  41. Vaucher, S., Li, M. & Mann, S. Synthesis of Prussian blue nanoparticles and nanocrystal superlattices in reverse microemulsions. Angew. Chem. Int. Ed. 39, 1793–1796 (2000).

    Article  CAS  Google Scholar 

  42. Eastoe, J., Hollamby, M. J. & Hudson, L. Recent advances in nanoparticle synthesis with reversed micelles. Adv. Colloid Interface Sci. 128–130, 5–15 (2006).

    Article  Google Scholar 

  43. Pileni, M.-P. The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nature Mater. 2, 145–150 (2003).

    Article  CAS  Google Scholar 

  44. Zacher, D., Liu, J. N., Huber, K. & Fischer, R. A. Nanocrystals of [Cu3(btc)2] (HKUST-1): a combined time-resolved light scattering and scanning electron microscopy study. Chem. Commun. 1031–1033 (2009).

  45. Rowsell, J. L. C. & Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 73, 3–14 (2004).

    Article  CAS  Google Scholar 

  46. Chen, B. et al. Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal–organic framework material. J. Am. Chem. Soc. 130, 6411–6423 (2008).

    Article  CAS  Google Scholar 

  47. Sing, K. S. W. et al. Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity. Pure Appl. Chem. 57, 603–619 (1985).

    Article  CAS  Google Scholar 

  48. Katcho, N. A. et al. Carbon hollow nanospheres from chlorination of ferrocene. Chem. Mater. 19, 2304–2309 (2007).

    Article  CAS  Google Scholar 

  49. Tanaka, D. & Kitigawa, S. in Chobunshi Kirzoku Sakutai (eds Fujita, M. & Shionoya, M.) 317 (Sankyo-Shuppan, 2009).

    Google Scholar 

Download references

Acknowledgements

The authors thank R. Matsuda, H. Sato and H. Sakamoto for their guidance with XRPD measurements, S. Singh, S. Furukawa and T. Tsuruoka for helpful discussions, and N. Yanai for his practical help. Thanks also go to S. Ruetten and K.H. Phan for their kind help with the measurements for FE-SEM, W. Richtering for experimental support regarding dynamic light scattering, and W. Tillmann for carrying out the IR and Raman spectrum measurements. This work was supported by the Exploratory Research for Advanced Technology (ERATO) ‘Kitagawa Integrated Pore Project’ of the Japan Society and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Contributions

D.T., S.K. and J.G. conceived and designed the experiments. D.T., A.H. and K.N. performed the experiments. D.T., A.H., K.N., K.A. and J.G. analysed the data. D.T., A.H., K.A., M.M., S.K. and J.G. contributed to writing the paper. All authors contributed to the optimization of the experiments.

Corresponding authors

Correspondence to Susumu Kitagawa or Juergen Groll.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 610 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, D., Henke, A., Albrecht, K. et al. Rapid preparation of flexible porous coordination polymer nanocrystals with accelerated guest adsorption kinetics. Nature Chem 2, 410–416 (2010). https://doi.org/10.1038/nchem.627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.627

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing