Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly and optically triggered disassembly of hierarchical dendron–virus complexes

Abstract

Nature offers a vast array of biological building blocks that can be combined with synthetic materials to generate a variety of hierarchical architectures. Viruses are particularly interesting in this respect because of their structure and the possibility of them functioning as scaffolds for the preparation of new biohybrid materials. We report here that cowpea chlorotic mottle virus particles can be assembled into well-defined micrometre-sized objects and then reconverted into individual viruses by application of a short optical stimulus. Assembly is achieved using photosensitive dendrons that bind on the virus surface through multivalent interactions and then act as a molecular glue between the virus particles. Optical triggering induces the controlled decomposition and charge switching of dendrons, which results in the loss of multivalent interactions and the release of virus particles. We demonstrate that the method is not limited to the virus particles alone, but can also be applied to other functional protein cages such as magnetoferritin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strategy for the assembly and optically triggered disassembly of a hierarchical CCMV–dendron complex.
Figure 2: Formation of CCMV–dendron complexes.
Figure 3: Disassembly of the CCMV–dendron complex.
Figure 4: Self-assembly and disassembly of the MF–dendron complex.

Similar content being viewed by others

References

  1. Mammen, M., Choi, S.-K. & Whitesides, G. M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 37, 2754–2794 (1998).

    Article  Google Scholar 

  2. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  CAS  Google Scholar 

  3. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nature Mater. 8, 543–557 (2009).

    Article  CAS  Google Scholar 

  4. Sarikaya, M. et al. Molecular biomimetics: nanotechnology through biology. Nature Mater. 2, 577–585 (2003).

    Article  CAS  Google Scholar 

  5. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nature Biotechnol. 21, 1171–1178 (2003).

    Article  CAS  Google Scholar 

  6. Badjic, J. D. et al. Multivalency and cooperativity in supramolecular chemistry. Acc. Chem. Res. 38, 723–732 (2005).

    Article  CAS  Google Scholar 

  7. Mulder, A., Huskens, J. & Reinhoudt, D. N. Multivalency in supramolecular chemistry and nanofabrication. Org. Biomol. Chem. 2, 3409–3424 (2004).

    Article  CAS  Google Scholar 

  8. Lee, C. C., MacKay, J. A., Frechet, J. M. J. & Szoka, F. C. Designing dendrimers for biological applications. Nature Biotechnol. 23, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  9. Dezzutti, C. S. et al. In vitro comparison of topical microbicides for prevention of human immunodeficiency virus type 1 transmission. Antimicrob. Agents Chemother. 48, 3834–3844 (2004).

    Article  CAS  Google Scholar 

  10. Patton, D. L., Cosgrove Sweeney, Y. T., McCarthy, T. D. & Hillier, S. L. Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob. Agents Chemother. 50, 1696–1700 (2006).

    Article  CAS  Google Scholar 

  11. Rupp, R., Rosenthal, S. L. & Stanberry, L. R. VivaGel™ (SPL7013 Gel): a candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2, 561–566 (2007).

    CAS  Google Scholar 

  12. Kostiainen, M. A. & Rosilo, H. Low-molecular-weight dendrons for DNA binding and release by reduction-triggered degradation of multivalent interactions. Chem. Eur. J. 15, 5656–5660 (2009).

    Article  CAS  Google Scholar 

  13. Kostiainen, M. A., Smith, D. K. & Ikkala, O. Optically triggered release of DNA from multivalent dendrons by degrading and charge-switching multivalency. Angew. Chem. Int. Ed. 46, 7600–7604 (2007).

    Article  CAS  Google Scholar 

  14. Welsh, D. J., Jones, S. P. & Smith, D. K. ‘On–off’ multivalent recognition: degradable dendrons for temporary high-affinity DNA binding. Angew. Chem. Int. Ed. 48, 4047–4051 (2009).

    Article  CAS  Google Scholar 

  15. Raja, K. S., Wang, Q. & Finn, M. G. Icosahedral virus particles as polyvalent carbohydrate display platforms. ChemBioChem 4, 1348–1351 (2003).

    Article  CAS  Google Scholar 

  16. Tong, G. J., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. J. Am. Chem. Soc. 131, 11174–11178 (2009).

    Article  CAS  Google Scholar 

  17. Amir, R. J., Pessah, N., Shamis, M. & Shabat, D. Self-immolative dendrimers. Angew. Chem. Int. Ed. 42, 4494–4499 (2003).

    Article  CAS  Google Scholar 

  18. de Groot, F. M. H. et al. ‘Cascade-release dendrimers’ liberate all end groups upon a single triggering event in the dendritic core. Angew. Chem. Int. Ed. 42, 4490–4494 (2003).

    Article  CAS  Google Scholar 

  19. de la Escosura, A., Nolte, R. J. M. & Cornelissen, J. J. L. M. Viruses and protein cages as nanocontainers and nanoreactors. J. Mater. Chem. 19, 2274–2278 (2009).

    Article  CAS  Google Scholar 

  20. Douglas, T. & Young, M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

    Article  CAS  Google Scholar 

  21. Lee, L. A., Niu, Z. & Wang, Q. Viruses and virus-like protein assemblies—chemically programmable nanoscale building blocks. Nano Res. 2, 349–364 (2009).

    Article  CAS  Google Scholar 

  22. Uchida, M. et al. Biological containers: protein cages as multifunctional nanoplatforms. Adv. Mater. 19, 1025–1042 (2007).

    Article  CAS  Google Scholar 

  23. Douglas, T. & Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 393, 152–155 (1998).

    Article  CAS  Google Scholar 

  24. Comellas-Aragones, M. et al. A virus-based single-enzyme nanoreactor. Nature Nanotech. 2, 635–639 (2007).

    Article  CAS  Google Scholar 

  25. Davis, H. E., Rosinski, M., Morgan, J. R. & Yarmush, M. L. Charged polymers modulate retrovirus transduction via membrane charge neutralization and virus aggregation. Biophys. J. 86, 1234–1242 (2004).

    Article  CAS  Google Scholar 

  26. Suci, P. A. et al. Assembly of multilayer films incorporating a viral protein cage architecture. Langmuir 22, 8891–8896 (2006).

    Article  CAS  Google Scholar 

  27. Sun, J. et al. Core-controlled polymorphism in virus-like particles. Proc. Natl Acad. Sci. USA 104, 1354–1359 (2007).

    Article  CAS  Google Scholar 

  28. Yang, L. et al. Self-assembled virus-membrane complexes. Nature Mater. 3, 615–619 (2004).

    Article  CAS  Google Scholar 

  29. Li, T. et al. Closed-packed colloidal assemblies from icosahedral plant virus and polymer. Chem. Mater. 21, 1046–1050 (2009).

    Article  CAS  Google Scholar 

  30. Li, T. et al. Core/shell biocomposites from the hierarchical assembly of bionanoparticles and polymer. Small 4, 1624–1629 (2008).

    Article  CAS  Google Scholar 

  31. Lee, Y. J. et al. Fabricating genetically engineered high-power lithium-ion batteries using multiple virus genes. Science 324, 1051–1055 (2009).

    CAS  PubMed  Google Scholar 

  32. Nam, K. T. et al. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312, 885–888 (2006).

    Article  CAS  Google Scholar 

  33. Allen, M. et al. Paramagnetic viral nanoparticles as potential high-relaxivity magnetic resonance contrast agents. Magn. Reson. Med. 54, 807–812 (2005).

    Article  CAS  Google Scholar 

  34. Gider, S. et al. Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 268, 77–80 (1995).

    Article  CAS  Google Scholar 

  35. Kasyutich, O. et al. Small angle X-ray and neutron scattering study of disordered and three-dimensional-ordered magnetic protein arrays. J. Appl. Phys. 105, 07B528 (2009).

    Article  Google Scholar 

  36. Wesley, W., Hsiao, S. C., Carrico, Z. M. & Francis, M. B. Genome-free viral capsids as multivalent carriers for taxol delivery. Angew. Chem. Int. Ed. 48, 9493–9497 (2009).

    Article  Google Scholar 

  37. Tomanin, R. & Scarpa, M. Why do we need new gene therapy viral vectors? Characteristics, limitations and future perspectives of viral vector transduction. Curr. Gene Ther. 4, 357–372 (2004).

    Article  CAS  Google Scholar 

  38. Campos, S. K. & Barry, M. A. Current advances and future challenges in adenoviral vector biology and targeting. Curr. Gene Ther. 7, 189–204 (2007).

    Article  CAS  Google Scholar 

  39. Jager, L. & Ehrhardt, A. Emerging adenoviral vectors for stable correction of genetic disorders. Curr. Gene Ther. 7, 272–283 (2007).

    Article  CAS  Google Scholar 

  40. Speir, J. A. et al. Structures of the native and swollen forms of Cowpea Chlorotic Mottle Virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3, 63–78 (1995).

    Article  CAS  Google Scholar 

  41. Kostiainen, M. A., Hardy, J. G. & Smith, D. K. High-affinity multivalent DNA binding by using low-molecular-weight dendrons. Angew. Chem. Int. Ed. 44, 2556–2559 (2005).

    Article  CAS  Google Scholar 

  42. Lavelle, L. et al. Phase diagram of self-assembled viral capsid protein polymorphs. J. Phys. Chem. B 113, 3813–3819 (2009).

    Article  CAS  Google Scholar 

  43. Zhang, D., Konecny, R., Baker, N. A. & McCammon, J. A. Electrostatic interaction between RNA and protein capsid in Cowpea Chlorotic Mottle Virus simulated by a coarse-grain RNA model and a Monte Carlo approach. Biopolymers 75, 325–337 (2004).

    Article  CAS  Google Scholar 

  44. Meldrum, F., Heywood, B. & Mann, S. Magnetoferritin: in vitro synthesis of a novel magnetic protein. Science 257, 522–523 (1992).

    Article  CAS  Google Scholar 

  45. Srivastava, S. et al. Integrated magnetic bionanocomposites through nanoparticle-mediated assembly of ferritin. J. Am. Chem. Soc. 129, 11776–11780 (2007).

    Article  CAS  Google Scholar 

  46. Perez, J. M. et al. Magnetic relaxation switches capable of sensing molecular interactions. Nature Biotechnol. 20, 816–820 (2002).

    Article  CAS  Google Scholar 

  47. Häussler, W., Wilk, A., Gapinski, J. & Patkowski, A. Interparticle correlations due to electrostatic interactions: a small angle X-ray and dynamic light scattering study. I. Apoferritin. J. Chem. Phys. 117, 413–426 (2002).

    Article  Google Scholar 

  48. Josephson, L., Perez, J. M. & Weissleder, R. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. 40, 3204–3206 (2001).

    Article  CAS  Google Scholar 

  49. Kasyutich, O., Sarua, A. & Schwarzacher, W. Bioengineered magnetic crystals. J. Phys. D 41, 134022 (2008).

    Article  Google Scholar 

  50. McMillan, R. A. et al. Ordered nanoparticle arrays formed on engineered chaperonin protein templates. Nature Mater. 1, 247–252 (2002).

    Article  CAS  Google Scholar 

  51. Verduin, B. J. M. The preparation of CCMV-protein in connection with its association into a spherical particle. FEBS Lett. 45, 50–54 (1974).

    Article  CAS  Google Scholar 

  52. Verduin, B. J. M. Degradation of Cowpea Chlorotic Mottle Virus ribonucleic acid in situ. J. Gen. Virol. 39, 131–147 (1978).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Organization for Scientific Research (Vidi grant to J.J.L.M.C. and top grant to R.J.M.N.), by the European Research Council (Euryi grant to J.J.L.M.C.) and by the Royal Netherlands Academy of Science (endowed chair to R.J.M.N. and Beijerink award to J.J.L.M.C.). O.K. was supported by the Engineering and Physical Sciences Research Council UK. M.A.K. was supported by the Academy of Finland, Instrumentarium Science Foundation and the Alfred Kordelin Foundation.

Author information

Authors and Affiliations

Authors

Contributions

M.A.K., J.J.L.M.C. and R.J.M.N. conceived and designed the experiments. M.A.K. performed the experiments. O.K. contributed to the experiment design and prepared the magnetoferritin. M.A.K., J.J.L.M.C. and R.J.M.N. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Mauri A. Kostiainen or Jeroen J. L. M. Cornelissen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1909 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostiainen, M., Kasyutich, O., Cornelissen, J. et al. Self-assembly and optically triggered disassembly of hierarchical dendron–virus complexes. Nature Chem 2, 394–399 (2010). https://doi.org/10.1038/nchem.592

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.592

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing