Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Loading and selective release of cargo in DNA nanotubes with longitudinal variation

Abstract

Nanotubes hold promise for a number of biological and materials applications because of their high aspect ratio and encapsulation potential. A particularly attractive goal is to access nanotubes that exert well-defined control over their cargo, such as selective encapsulation, precise positioning of the guests along the nanotube length and triggered release of this cargo in response to specific external stimuli. Here, we report the construction of DNA nanotubes with longitudinal variation and alternating larger and smaller capsules along the tube length. Size-selective encapsulation of gold nanoparticles into the large capsules of these tubes leads to ‘nanopeapod’ particle lines with positioning of the particles 65 nm apart. These nanotubes can then be opened when specific DNA strands are added to release their particle cargo spontaneously. This approach could lead to new applications of self-assembled nanotubes, such as in the precise organization of one-dimensional nanomaterials, gene-triggered selective delivery of drugs and biological sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Construction of triangular DNA nanotubes 3, 4, 5 and 6.
Figure 2: Construction of triangular rungs 1 and 2.
Figure 3: Characterization of DNA nanotubes 3.
Figure 4: AuNP encapsulation into alternating large–small triangular-shaped DNA nanotubes 4.
Figure 5: Control experiments.
Figure 6: Characterization of the DNA nanotubes 5 for selective release of AuNPs in response to specific external DNA eraser strands ES1′.
Figure 7: Construction of DNA nanotubes 13a and 13b, and ultraviolet–visible spectra of 13a.

Similar content being viewed by others

References

  1. Meital, R. et al. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science 300, 625–627 (2003).

    Article  Google Scholar 

  2. Hu, M. S. et al. Photosensitive gold-nanoparticle-embedded dielectric nanowires. Nature Mater. 5, 102–106 (2006).

    Article  CAS  Google Scholar 

  3. Zhao, Y. S. et al. Low-dimensional nanomaterials based on small organic molecules: preparation and optoelectronic properties. Adv. Mater. 20, 2859–2876 (2008).

    Article  CAS  Google Scholar 

  4. Wang, C. J. & Lin, L. Y. Nanoscale waveguiding methods. Nanoscale Res. Lett. 2, 219–229 (2007).

    Article  CAS  Google Scholar 

  5. Banerjee, P., Perez, I., Henn-Lecordier, L., Lee, S. B. & Rubloff, G. W. Nanotubular metal–insulator–metal capacitor arrays for energy storage. Nature Nanotechnol. 4, 292–296 (2009).

    Article  CAS  Google Scholar 

  6. Zhang, L., Rakotondradany, F., Myles, A. J., Fenniri, H. & Webster, T. J. Arginine–glycine–aspartic acid modified rosette nanotube–hydrogel composites for bone tissue engineering. Biomaterials 7, 1309–1320 (2009).

    Article  Google Scholar 

  7. Suri, S. S., Rakotondradany, F., Myles, A., Fenniri, H. & Singh, B. The role of RGD-tagged helical rosette nanotubes in the induction of inflammation and apoptosis in human lung adenocarcinoma cells through the P38 MAPK pathway. Biomaterials 30, 3084–3090 (2009).

    Article  CAS  Google Scholar 

  8. Hilder, T. A. & Hill, J. M. Modeling the loading and unloading of drugs into nanotubes. Small 5, 300–308 (2009).

    Article  CAS  Google Scholar 

  9. Lu, F. et al. Advances in bioapplication of carbon nanotubes. Adv. Mater. 21, 139–152 (2009).

    Article  CAS  Google Scholar 

  10. Yamamoto, T., Fukushima, T. & Aida, T. Self-assembled nanotubes and nanocoils from π-conjugated building blocks. Adv. Polym. Sci. 220, 1–27 (2008).

    CAS  Google Scholar 

  11. Shimizu, T. Self-assembled organic nanotubes: toward attoliter chemistry. J. Polym. Sci. A 46, 2601–2611 (2008).

    Article  CAS  Google Scholar 

  12. Tominaga, M. & Fujita, M. Guest-induced assembly of Pdii-linked coordination nanotubes. Bull. Chem. Soc. Jpn 80, 1473–1482 (2007).

    Article  CAS  Google Scholar 

  13. Yoog, H. et al. Polypyrrole nanotubes conjugated with human olfactory receptors: high-performance transducers for FET-type bioelectronic noses. Angew. Chem. Int. Ed. 48, 2755–2758 (2009).

    Article  Google Scholar 

  14. Liu, G. Block copolymer nanotubes derived from self-assembly. Adv. Polym. Sci. 220, 29–64 (2008).

    CAS  Google Scholar 

  15. Zhou, Y. Lipid nanotubes: formation, templating nanostructures and drug nanocarriers. Crit. Rev. Solid State Mater. Sci. 33, 183–196 (2008).

    Article  CAS  Google Scholar 

  16. Zhou, Y. & Shimizu, T. Lipid nanotubes: a unique template to create diverse one-dimensional nanostructures. Chem. Mater. 20, 625–633 (2008).

    Article  CAS  Google Scholar 

  17. Shao, H. & Parquette, J. R. Controlled peptide–dendron self-assembly: interconversion of nanotubes and fibriller nanostructures. Angew. Chem. Int. Ed. 48, 2525–2528 (2009).

    Article  CAS  Google Scholar 

  18. Gazit, E. Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem. Soc. Rev. 36, 1263–1269 (2007).

    Article  CAS  Google Scholar 

  19. Ngweniform, P., Li, D. & Mao, C. Self-assembly of drug-loaded liposomes on genetically engineered protein nanotubes: a potential anti-cancer drug delivery vector. Soft Matter 5, 954–956 (2009).

    Article  CAS  Google Scholar 

  20. Liu, D., Park, S. H., Reif, J. H. & LaBean, T. H. DNA nanotubes self-assembled from triple-crossover tiles as templates for conductive nanowires. Proc. Natl Acad. Sci. USA 101, 717–722 (2004).

    Article  CAS  Google Scholar 

  21. Yan, H., Park, S. H., Finkelstein, G., Reif, J. H. & LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884 (2003).

    Article  CAS  Google Scholar 

  22. Liu, C. et al. Functional DNA nanotube arrays: bottle-up meets top-down. Angew. Chem. Int. Ed. 46, 6089–6092 (2007).

    Article  Google Scholar 

  23. Ko, S. H., Liu, H., Chen, Y. & Mao, C. DNA nanotubes as combinatorial vehicles for cellular delivery. Biomacromolecules 9, 3039–3043 (2008).

    Article  CAS  Google Scholar 

  24. Douglas, S. M., Chou, J. J. & Shih, W. M., DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc. Natl Acad. Sci. USA 104, 6644–6648 (2007).

    Article  CAS  Google Scholar 

  25. Sherman, W. B. & Seeman, N. C. Design of minimally strained nucleic acid nanotubes. Biophys. J. 90, 4546–4557 (2006).

    Article  CAS  Google Scholar 

  26. Endo, M., Seeman, C. & Majima, T. DNA tube structures controlled by a four-way-branched DNA connector. Angew. Chem. Int. Ed. 44, 6074–6077 (2005).

    Article  CAS  Google Scholar 

  27. Park, S. H. et al. Three-helix bundle DNA tiles self-assemble into 2D lattice or 1D templates for silver nanowires. Nano Lett. 5, 693–696 (2005).

    Article  CAS  Google Scholar 

  28. Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    Article  CAS  Google Scholar 

  29. Kuzuya, A., Wang, R., Sha, R. & Seeman, N. C. Six-helix and eight-helix DNA nanotubes assembled from half-tubes. Nano Lett. 7, 1757–1763 (2007).

    Article  CAS  Google Scholar 

  30. Sobey, T. L., Renner, S. & Simmel, F. C. Assembly and melting of DNA nanotubes from single-sequence tiles. J. Phys. A 21, 1–9 (2009).

    Google Scholar 

  31. Mitchell, J. C., Harris, J. R., Malo, J., Bath, J. & Turberfield, A. J. Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004).

    Article  CAS  Google Scholar 

  32. Aldaye, F. A. et al. Modular construction of DNA nanotubes of tunable geometry and single- or double-stranded character. Nature Nanotechnol. 4, 349–352 (2009).

    Article  CAS  Google Scholar 

  33. Rothemund, P. W. K. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    Article  CAS  Google Scholar 

  34. O'Neill, P., Rothemund, P. W. K., Kumar, A. & Fygenson, D. K. Sturdier DNA nanotubes via ligation. Nano Lett. 6, 1379–1383 (2006).

    Article  CAS  Google Scholar 

  35. Sharma, J. et al. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science 323, 112–114 (2009).

    Article  CAS  Google Scholar 

  36. Jeong, G. H. et al. Cesium encapsulation in single-walled carbon nanotubes via plasma ion irradiation: application to junction formation and ab initio investigation. Phys. Rev. B 68, 0754101 (2003).

    Google Scholar 

  37. Okubo, S. et al. Diameter-dependent band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. J. Phys. Chem. C 113, 571–571 (2009).

    Article  CAS  Google Scholar 

  38. Lin, H. Y., Tsai, L. C. & Chen, C. D. Assembly of nanoparticle patterns with single-particle resolution using DNA-mediated charge trapping technique: method and applications. Adv. Funct. Mater. 17, 3182–3186 (2007).

    Article  CAS  Google Scholar 

  39. Warner, M. G. & Hutchison, J. E. Linear assemblies of nanoparticles electrostatically organized on DNA scaffolds. Nature Mater. 2, 272–277 (2003).

    Article  CAS  Google Scholar 

  40. Luo, J., Huang, Z., Zhao, Y., Zhang, L. & Zhu, J. Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes. Adv. Mater. 16, 1512–1515 (2004).

    Article  CAS  Google Scholar 

  41. Nakao, H. et al. Highly ordered assemblies of Au nanoparticles organized on DNA. Nano Lett. 3, 1391–1394 (2003).

    Article  CAS  Google Scholar 

  42. Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    Article  CAS  Google Scholar 

  43. Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    Article  CAS  Google Scholar 

  44. Aldaye, F. A. & Sleiman, H. F. Sequential self-assembly of a DNA hexagon as a template for the organization of gold nanoparticles. Angew. Chem. Int. Ed. 118, 2204–2209 (2006).

    Article  Google Scholar 

  45. Aldaye, F. A. & Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 129, 4130–4131 (2007).

    Article  CAS  Google Scholar 

  46. Aldaye, F. A. & Sleiman, H. F. Modular access to structurally switchable 3D discrete DNA assemblies. J. Am. Chem. Soc. 129, 13376–13377 (2007).

    Article  CAS  Google Scholar 

  47. Aldaye, F. A., Palmer, A. L. & Sleiman, H. F. Assembling materials with DNA as the guide. Science 321, 1795–1799 (2008).

    Article  CAS  Google Scholar 

  48. Hyperchem 7.5 (Hypercube, Gainesville, 2003).

  49. Robert, W. The use of gold nanoparticles in diagnostics and detection. Chem. Soc. Rev. 9, 2028–2045 (2008).

    Google Scholar 

  50. Geng, Y. et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnol. 2, 249–255 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada, Canada Foundation for Innovation, Centre for Self-Assembled Chemical Structures and the Canadian Institute for Advanced Research for financial support, and K. Sears for help in running the Pt–C shadowing experiment. P.K.L and P.K. thank the Canadian Institutes of Health Research for a Chemical Biology Scholarship. H.F.S is a Cottrell Scholar of the Research Corporation.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript. H.F.S. conceived and designed the project, analysed the data and co-wrote the paper. P.K.L conceived and designed the project, carried out the experiments, analysed the data and co-wrote the paper. P.K. and G.C made the confocal fluorescence and TIRF microscopy measurements and analysed the data. F.A.A. assisted in project design. C.K.M. carried out the cryo-EM experiment. G.D.H. helped with the design of nanotube 13 and with the graphical illustrations.

Corresponding author

Correspondence to Hanadi F. Sleiman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3299 kb)

Supplementary information

Supplementary Movie S1 (AVI 2124 kb)

Supplementary information

Supplementary Movie S2 (AVI 2124 kb)

Supplementary information

Supplementary Movie S3 (AVI 2124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lo, P., Karam, P., Aldaye, F. et al. Loading and selective release of cargo in DNA nanotubes with longitudinal variation. Nature Chem 2, 319–328 (2010). https://doi.org/10.1038/nchem.575

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.575

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research