Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds

Abstract

Polar stratospheric clouds (PSCs) are extremely efficient at catalysing the transformation of photostable chlorine reservoirs into photolabile species, which are actively involved in springtime ozone-depletion events. Why PSCs are such efficient catalysts, however, is not well understood. Here, we investigate the freezing behaviour of ternary HNO3–H2SO4–H2O droplets of micrometric size, which form type II PSC ice particles. We show that on freezing, a phase separation into pure ice and a residual solution coating occurs; this coating does not freeze but transforms into glass below 150 K. We find that the coating, which is thicker around young ice crystals, can still be approximately 30 nm around older ice crystals of diameter about 10 µm. These results affect our understanding of PSC microphysics and chemistry and suggest that chlorine-activation reactions are better studied on supercooled HNO3–H2SO4–H2O solutions rather than on a pure ice surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DSC thermograms obtained from three samples of emulsified 23 wt% HNO3 and 3 wt% H2SO4.
Figure 2: The transition temperatures for the cooling and warming of bulk25 and emulsified HNO3–H2SO4–H2O.
Figure 3: Liquid coating around ice crystals.
Figure 4: Thickness of the ice crystal coating.

Similar content being viewed by others

References

  1. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. On the depletion of Antarctic ozone. Nature 321, 755–758 (1986).

    Article  CAS  Google Scholar 

  2. Molina M. J., Tso, T. L., Molina, L. T. & Wang, F. C. Y. Antarctic stratospheric chemistry of chlorine nitrate, hydrogen chloride, and ice: release of active chlorine. Science 238, 1253–1257 (1987).

    Article  CAS  Google Scholar 

  3. Molina, M. J. in The Chemistry of the Atmosphere: The Impact of Global Change (ed. Calvet, J. G.) 27–38 (Blackwell, 1994).

    Google Scholar 

  4. Molina, M. J., Molina, L. T. & Golden, D. M. Environmental chemistry (gas and gas–solid interactions): the role of physical chemistry. J. Phys. Chem. 100, 12888–12896 (1996).

    Article  CAS  Google Scholar 

  5. Prenni, A. J. & Tolbert, M. A. Studies of polar stratospheric cloud formation. Acc. Chem. Res. 34, 545–553 (2001).

    Article  CAS  Google Scholar 

  6. Zondlo, M. A., Barone, S. B. & Tolbert, M. A. Condensed-phase products in heterogeneous reactions: N2O5, ClONO2, and HNO3 reacting on ice films at 185 K. J. Phys. Chem. A 102, 5735–5748 (1998).

    Article  CAS  Google Scholar 

  7. Zondlo, M. A., Hudson, P. K., Prenni, A. J. & Tolbert, M. A. Chemistry and microphysics of polar stratospheric clouds and cirrus clouds. Ann. Rev. Phys. Chem. 51, 473–499 (2000).

    Article  CAS  Google Scholar 

  8. Chang, H.-Y. A., Koop, T., Molina, L. T., & Molina, M. J. Phase transitions in emulsified HNO3/H2O and HNO3/H2SO4/H2O solutions. J. Phys. Chem. A 103, 2673–2679 (1999).

    Article  CAS  Google Scholar 

  9. Buesnel, R., Hillier, I. H. & Masters, A. J. Molecular dynamics simulation of the ionization of hydrogen chloride in water clusters using a quantum mechanical potential. Chem. Phys. Lett. 247, 391–394 (1995).

    Article  CAS  Google Scholar 

  10. Pursell, C. J., Zaidi, M., Thompson, A., Franser-Caston, C. & Vela, E. Acid–base chemistry on crystalline ice: HCl + NH3 . J. Phys. Chem. A 104, 552–556 (2000).

    Article  CAS  Google Scholar 

  11. McNeil, V. F., Loerting, T., Geiger, F. M., Trout, B. L. & Molina, M. J. Hydrogen chloride-induced surface disordering on ice. Proc. Natl Acad. Sci. USA 103, 9422–9427 (2006).

    Article  Google Scholar 

  12. McNeill, V. F. et al. Interaction of hydrogen chloride with ice surfaces: the effects of grain size, surface roughness, and surface disorder. J. Phys. Chem. A 111, 6274–6284 (2007).

    Article  CAS  Google Scholar 

  13. Fluckiger, B., Chaix, L. & Rossi, M. J. Properties of the HCl/ice, HBr/ice, and H2O/ice interface at stratospheric temperatures (200 K) and its importance for atmospheric heterogeneous reactions. J. Phys. Chem. A 104, 11739–11750 (2000).

    Article  CAS  Google Scholar 

  14. Bogdan, A., Kulmala, M., MacKenzie, A. R. & Laaksonen, A. Study of finely divided aqueous systems as an aid to understanding the surface chemistry of polar stratospheric clouds: case of HCl/H2O and HNO3/HCl/H2O systems. J. Geophys. Res. 108, 4303, doi:10.1029/2002JD002606 (2003).

    Article  Google Scholar 

  15. Oppliger, R., Allanic, A. & Rossi, M. J. Real-time kinetics of the uptake of ClONO2 on ice and in the presence of HCl in the temperature range 160 K ≤ T ≤ 200 K. J. Phys. Chem. A 101, 1903–1911 (1997).

    Article  CAS  Google Scholar 

  16. Gertner, B. J. & Hynes, J. T. Molecular dynamic simulation of hydrochloric acid ionization at the surface of stratospheric ice. Science 271, 1563–1565 (1996).

    Article  CAS  Google Scholar 

  17. Wofsy, S. C., Molina, M. J., Salawitch, R. J., Fox, L. E. & McElroy, M. B. Interactions between HCl, NOx, and H2O ice in the Antarctic stratosphere: implication for ozone. J. Geophys. Res. 93, 2442–2450 (1988).

    Article  CAS  Google Scholar 

  18. Angell, C. A. The old problems of glass and the glass transition, and the many new twists. Proc. Natl Acad. Sci. USA 92, 6675–6682 (1995).

    Article  CAS  Google Scholar 

  19. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  20. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  21. Bogdan, A., Molina, M. J., Sassen, K. & Kulmala, M. Formation of low-temperature cirrus from H2SO4/H2O aerosol droplets. J. Phys. Chem. A 110, 12541–12542 (2006).

    Article  CAS  Google Scholar 

  22. Bogdan, A. & Molina, M. J. Why does large relative humidity with respect to ice persist in cirrus ice clouds? J. Phys. Chem. A 113, 14123–14130 (2009). doi: 10.1021/jp9063609.

    Article  CAS  Google Scholar 

  23. Bogdan, A. Reversible formation of glassy water in slowly cooling diluted drops. J. Phys. Chem. B 110, 12205–12206 (2006).

    Article  CAS  Google Scholar 

  24. Delval, C. & Rossi, M. J. Influence of monolayer amounts of HNO3 on the evaporation rate of H2O over ice in the range 179 to 208 K: a quartz crystal microbalance study. J. Phys. Chem. A 109, 7151–7165 (2005).

    Article  CAS  Google Scholar 

  25. Beyer, K. D., Hansen, A. R. & Raddatz, N. Experimental determination of the H2SO4/HNO3/H2O phase diagram in regions of stratospheric importance. J. Phys. Chem. A 108, 770–780 (2004).

    Article  CAS  Google Scholar 

  26. Beyer, K. D., Hansen, A. R. & Poston, M. The search for sulfuric acid octahydrate: experimental evidence. J. Phys. Chem. A 107, 2025–2932 (2003).

    Article  CAS  Google Scholar 

  27. Gable, C. M., Betz, H. F. & Maron, S. H. Phase equilibria of the system sulfur trioxide–water. J. Am. Chem. Soc. 72, 1445–1448 (1950).

    Article  CAS  Google Scholar 

  28. Carslaw, K. S. et al. Particle microphysics and chemistry in remotely observed mountain polar stratospheric clouds. J. Geophys. Res. 103, 5785–5796 (1998).

    Article  CAS  Google Scholar 

  29. Macfarlane, D. R. Continuous cooling (CT) diagrams and critical cooling rates: a direct method of calculations using the concept of additivity. J. Non-Cryst. Solids 53, 61–72 (1982).

    Article  CAS  Google Scholar 

  30. Lawson, R. P. et al. Aircraft measurements of microphysical properties of subvisible cirrus in the tropical tropopause layer. Atmos. Chem. Phys. 8, 1609–1620 (2008).

    Article  CAS  Google Scholar 

  31. Deshler, T., Peter, T., Müller, R. & Crutzen, P. The lifetime of leewave-induced ice particles in the Arctic stratosphere: I. Balloonborne observations. Geophys. Res. Lett. 21, 1327–1330 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Bertel, S.C. Wofsy and M.B. McElroy for discussions. A.B. thanks the Physical and Chemical Departments of the University of Helsinki for providing facilities to perform the experiments. We are grateful for financial support from the European Research Council (Starting Grant SULIWA) and the Austrian Science Fund (START award Y391).

Author information

Authors and Affiliations

Authors

Contributions

A.B. designed the study, performed measurements and calculations, collected and analysed data, and wrote the manuscript. M.J.M. designed the study, analysed data, and wrote and corrected the manuscript. H.T., E.M. and T.L. analysed data, and wrote and corrected the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Anatoli Bogdan or Thomas Loerting.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdan, A., Molina, M., Tenhu, H. et al. Formation of mixed-phase particles during the freezing of polar stratospheric ice clouds. Nature Chem 2, 197–201 (2010). https://doi.org/10.1038/nchem.540

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.540

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing