Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organocatalytic cascade reactions as a new tool in total synthesis

Abstract

The total synthesis of natural products and biologically active compounds, such as pharmaceuticals and agrochemicals, has reached an extraordinary level of sophistication. We are, however, still far away from the 'ideal synthesis' and the state of the art is still frequently hampered by lengthy protecting-group strategies and costly purification procedures derived from the step-by-step protocols. In recent years several new criteria have been brought forward to solve these problems and to improve total synthesis: atom, step and redox economy or protecting-group-free synthesis. Over the past decade the research area of organocatalysis has rapidly grown to become a third pillar of asymmetric catalysis standing next to metal and biocatalysis, thus paving the way for a new and powerful strategy that can help to address these issues — organocatalytic cascade reactions. In this Review we present the first applications of such asymmetric organocascade reactions to the total synthesis of natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organocatalysed cascade reactions.
Figure 2: First application of an organocatalysed cascade reaction in total synthesis.
Figure 3: Application of IM–EN sequences in total synthesis.
Figure 4: Application of EN–IM sequences in total synthesis.
Figure 5: Alternative EN and IM combinations in total synthesis.
Figure 6: Combination of metal- and organocatalysis in natural product synthesis.
Figure 7: Brønsted-acid-catalysed cascade reactions in natural product synthesis.
Figure 8: Applications of organocatalytic cascade reactions in the synthesis of pharmaceuticals.

Similar content being viewed by others

References

  1. Nicolaou, K. C. & Montagnon, T. Molecules that Changed the World: A Brief History of the Art and Science of Synthesis and its Impact on Society (Wiley-VCH, 2008).

    Google Scholar 

  2. Nicolaou, K. C. & Sorensen, E. J. Classics in Total Synthesis (Wiley-VCH, 1995).

    Google Scholar 

  3. Nicolaou, K. C. & Snyder, S. A. Classics in Total Synthesis II (Wiley-VCH, 2003).

    Google Scholar 

  4. Walji, A. M. & MacMillan, D. W. C. Strategies to bypass the Taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 1477–1489 (2007).

  5. Staunton, J. & Weissman, K. J. Polyketide biosynthesis: a millennium review. Nature Prod. Rep. 18, 380–416 (2001).

    Article  CAS  Google Scholar 

  6. Townsend, C. A. Structural studies of natural product biosynthetic proteins. Chem. Biol. 4, 721–730 (1997).

    Article  CAS  Google Scholar 

  7. Floss, H. G. & Yu. T.-W. Rifamycin-mode of action, resistance, and biosynthesis. Chem. Rev. 105, 621–632 (2005).

    Article  CAS  Google Scholar 

  8. Davies, H. M. L. & Sorensen, E. J. Rapid complexity generation in natural product total synthesis. Chem. Soc. Rev. 38, 2981–2982 (2009).

    Article  CAS  Google Scholar 

  9. Nicolaou, K. C. & Chen, J. S. The art of total synthesis through cascade reactions. Chem. Soc. Rev. 38, 2993–3009 (2009).

    Article  CAS  Google Scholar 

  10. Nicolaou, K. C., Edmonds, D. J. & Bulger, P. G. Cascade reactions in total synthesis. Angew. Chem. Int. Ed. 45, 7134–7186 (2006).

    Article  CAS  Google Scholar 

  11. Young, I. S. & Baran, P. S. Protecting-group-free synthesis as an opportunity for invention. Nature Chem. 1, 193–205 (2009).

    Article  CAS  Google Scholar 

  12. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

  13. Trost, B. M. The atom economy − a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  Google Scholar 

  14. Wender, P. A., Verma, V. A., Paxton, T. J. & Pillow, T. H. Function-oriented synthesis, step economy, and drug design. Acc. Chem. Res. 41, 40–49 (2008).

    Article  CAS  Google Scholar 

  15. Kim, J. & Movassaghi, M. Biogenetically inspired syntheses of alkaloid natural products. Chem. Soc. Rev. 38, 3035–3050 (2009).

    Article  CAS  Google Scholar 

  16. Bulger, P. G., Bagal, S. K. & Marquez, R. Recent advances in biomimetic natural product synthesis. Nat. Prod. Rep. 25, 254–297 (2008).

    Article  CAS  Google Scholar 

  17. Newhouse, T., Baran, P. S. & Hoffmann, R. W. The economies of synthesis. Chem. Soc. Rev. 38, 3010–3021 (2009).

    Article  CAS  Google Scholar 

  18. Tietze, L. F., Brasche, G. & Gericke, K. M. Domino Reactions in Organic Synthesis (Wiley-VCH, 2006).

    Book  Google Scholar 

  19. Enders, D., Grondal, C. & Hüttl, M. R. M. Asymmetric organocatalytic domino reactions. Angew. Chem. Int. Ed. 46, 1570–1581 (2007).

    Article  CAS  Google Scholar 

  20. Walji, A. M. & MacMillan, D. W. C. Strategies to bypass the taxol problem. Enantioselective cascade catalysis, a new approach for the efficient construction of molecular complexity. Synlett 1477–1489 (2007).

  21. Bertelsen, S. & Jørgensen, K. A. Organocatalysis - after the gold rush. Chem. Soc. Rev. 38, 2178–2189 (2009).

    Article  CAS  Google Scholar 

  22. Dondoni, A. & Massi, A. Asymmetric organocatalysis: from infancy to adolescence. Angew. Chem. Int. Ed. 47, 4638–4660 (2008).

    Article  CAS  Google Scholar 

  23. MacMillan, D. W. C. The advent and development of organocatalysis. Nature 455, 304–308 (2008).

    Article  CAS  Google Scholar 

  24. Dalko, P. I. Enantioselective Organocatalysis, Reactions and Experimental Procedures (Wiley-VCH, 2007).

    Book  Google Scholar 

  25. Organocatalysis. Chem. Rev. 107 (special issue), 5413–5883 (2007).

  26. de Figueiredo, R. M. & Christmann, M. Organocatalytic synthesis of drugs and bioactive natural products. Eur. J. Org. Chem. 2575–2600 (2007).

  27. Berkessel, A. & Gröger, H. Asymmetric Organocatalysis (Wiley-VCH, 2005).

    Book  Google Scholar 

  28. Zhang, F.-L., Xu, A.-W., Gong, Y.-F., Wei, M.-H. & Yang, X.-L. Asymmetric organocatalytic four component quadruple domino reaction initiated by oxa-Michael addition of alcohols to acrolein. Chem. Eur. J. 15, 6815–6818 (2009).

    Article  CAS  Google Scholar 

  29. Kotame, P., Hong, B.-C. & Liao, J.-H. Enantioselective synthesis of the tetrahydro-6H-benzo[c]chromenes via domino Michael–aldol condensation: control of five stereocenters in a quadruple-cascade organocatalytic multi-component reaction. Tetrahedron Lett. 50, 704–707 (2009).

    Article  CAS  Google Scholar 

  30. Enders, D., Krüll, R. & Bettray, W. Microwave-assisted organocatalytic quadruple domino reactions of acetaldehyde and nitroalkenes. Synthesis doi:10.1055/s-0029-1217146 (2010).

  31. Akiyama, T., Itoh, J. & Fuchibe, K. Recent progress in chiral Brønsted acid catalysis. Adv. Synth. Catal. 348, 999–1010 (2006).

    Article  CAS  Google Scholar 

  32. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 1520–1543 (2006).

    Article  CAS  Google Scholar 

  33. Enders, D., Niemeier, O. & Henseler, A. Organocatalysis by N-heterocyclic carbenes. Chem. Rev. 107, 5606–5655 (2007).

    Article  CAS  Google Scholar 

  34. Lathrop, S. P. & Rovis, T. Asymmetric synthesis of functionalized cyclopentanones via a multicatalytic secondary amine/N-heterocyclic carbene catalyzed cascade sequence. J. Am. Chem. Soc. 131, 13628–13630 (2009).

    Article  CAS  Google Scholar 

  35. Sun, F.-G., Huang, X.-L. & Ye, S. Diastereoselective synthesis of 4-hydroxytetralones via a cascade Stetter−aldol reaction catalyzed by N-heterocyclic carbenes. J. Org. Chem. 75, 273–276 (2010).

    Article  CAS  Google Scholar 

  36. Sánchez-Larios, E. & Gravel, M. Diastereoselective synthesis of indanes via a domino Stetter−Michael reaction. J. Org. Chem. 74, 7536–7539 (2009).

    Article  Google Scholar 

  37. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. Engl. 18, 239–258 (1979).

    Article  Google Scholar 

  38. Kaneko, S., Yoshino, T., Katoh, T. & Terashima, S. Synthetic studies of Huperzine A and its fluorinated analogues. 1. Novel asymmetric syntheses of an enantiomeric pair of Huperzine A. Tetrahedron 54, 5471–5484 (1998).

    Article  CAS  Google Scholar 

  39. Bai, D. Development of huperzine A and B for treatment of Alzheimer's disease. Pure Appl. Chem. 79, 469–479 (2007).

    Article  CAS  Google Scholar 

  40. List, B. The ying and yang of asymmetric aminocatalysis. Chem. Commun. 819–824 (2006).

  41. Yua, X. & Wang, W. Organocatalysis: asymmetric cascade reactions catalysed by chiral secondary amines. Org. Biomol. Chem. 6, 2037–2046 (2008).

    Article  Google Scholar 

  42. Melchiorre, P., Marigo, M., Carlone, A. & Bartoli, G. Asymmetric aminocatalysis - Gold rush in organic chemistry. Angew. Chem. Int. Ed. 47, 6138–6171 (2008).

    Article  CAS  Google Scholar 

  43. Marigo, M., Franzén, J., Poulsen, T. B., Zhuang, W. & Jørgensen, K. A. Asymmetric organocatalytic epoxidation of α,β-unsaturated aldehydes with hydrogen peroxide. J. Am. Chem. Soc. 127, 6964–6965 (2005).

    Article  CAS  Google Scholar 

  44. Yang, J. W., Hechavarria Fonseca, M. Y. & List, B. Catalytic asymmetric reductive Michael cyclization. J. Am. Chem. Soc. 127, 15036–15037 (2005).

    Article  CAS  Google Scholar 

  45. Huang, Y., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005).

    Article  CAS  Google Scholar 

  46. Bräse, S., Encinas, A., Keck, J. & Nising, C. F. Chemistry and biology of mycotoxins and related fungal metabolites. Chem. Rev. 109, 3903–3990 (2009).

    Article  Google Scholar 

  47. Nising, C. F., Ohnemüller, U. K. & Bräse, S. The total synthesis of the fungal metabolite diversonol. Angew. Chem. Int. Ed. 45, 307–309 (2005).

    Article  Google Scholar 

  48. Gérard, E. M. C. & Bräse, S. Modular syntheses of diversonol-type tetrahydroxanthone mycotoxins: blennolide C (epi-hemirugulotrosin A) and analogues. Chem. Eur. J. 14, 8086–8089 (2008).

    Article  Google Scholar 

  49. Ohnemüller, U. K., Nising, C. F., Encinas, A. & Bräse, S. A versatile access to enantiomerically pure 5-substitued 4-hydroxycyclohex-2-enones: An advanced hemisecalonic acid A model. Synthesis 2175–2185 (2007).

  50. Lesch, B. & Bräse, S. A short, atom-economical entry to tetrahydroxanthenones. Angew. Chem. Int. Ed. 43, 115–118 (2003).

    Article  CAS  Google Scholar 

  51. Stork, G. & Schultz, A. G. The total synthesis of dl-Camptothecin. J. Am. Chem. Soc. 93, 4074–4075 (1971).

    Article  CAS  Google Scholar 

  52. Li, Q.-Y., Zu, Y.-G., Shi, R.-Z. & Yao, L.-P. Review camptothecin: current perspectives. Curr. Med. Chem. 13, 2021–2039 (2006).

    Article  CAS  Google Scholar 

  53. Liu, G.-S., Dong, Q.-L., Yao, Y.-S. & Yao, Z.-J. Expeditious total syntheses of camptothecin and 10-hydroxycamptothecin. Org. Lett. 10, 5393–5396 (2008).

    Article  CAS  Google Scholar 

  54. Dharmarajan, S., Perumal, Y., Rathinasabapathy, T. & Tanushree, R. B. Camptothecin and its analogues: a review on their chemotherapeutic potential. Nat. Prod. Res. 19, 393–412 (2005).

    Article  Google Scholar 

  55. Yoshitomi, Y., Arai, H., Makino, K. & Hamada, Y. Enantioselective synthesis of martinelline chiral core and its diastereomer using asymmetric tandem Michael–aldol reaction. Tetrahedron 64, 11568–11579 (2008).

    Article  CAS  Google Scholar 

  56. Witherup, K. M. et al. Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (bignoniaceae). J. Am. Chem. Soc. 117, 6682–6685 (1995).

    Article  CAS  Google Scholar 

  57. Itoh, T., Yokoya, M., Miyauchi, K., Nagata, K. & Ohsawa, A. Total synthesis of ent-dihydrocorynantheol by using a proline-catalyzed asymmetric addition reaction. Org. Lett. 8, 1533–1535 (2006).

    Article  CAS  Google Scholar 

  58. Ibrahem, I., Sundén, H., Rios, R., Zhao, G.-L. & Córdova, A. One-pot pyrrolidine-catalyzed synthesis of benzopyrans, benzothiopyranes, and dihydroquinolidines. Chimia 61, 219–223 (2007).

    Article  CAS  Google Scholar 

  59. Bertelsen, S., Marigo, M., Brandes, S., Dinér, P. & Jørgensen, K. A. Dienamine catalysis: organocatalytic asymmetric γ-amination of α, β-unsaturated aldehydes. J. Am. Chem. Soc. 128, 12973–12980 (2006).

    Article  CAS  Google Scholar 

  60. Liu, K., Chougnet, A. & Woggon, W.-D. A short route to α-tocopherol. Angew. Chem. Int. Ed. 47, 5827–5829 (2008).

    Article  CAS  Google Scholar 

  61. Volz, N., Bröhmer, M. C., Nieger, M. & Bräse, S. Where are they now? An asymmetric organocatalytic sequence towards 4a-methyl tetrahydroxanthones: formal synthesis of 4-dehydroxydiversonol. Synlett 550–553 (2009).

  62. Hong, B.-C., Wu, M.-F., Tseng, H.-C. & Liao, J.-H. Enantioselective organocatalytic formal [3 + 3] cycloaddition of α, β-unsaturated aldehydes and application to the asymmetric synthesis of (-)-isopulegol hydrate and (-)-cubebaol. Org. Lett. 8, 2217–2220 (2006).

    Article  CAS  Google Scholar 

  63. Hong, B.-C. et al. Organocatalytic asymmetric Robinson annulation of α,β-unsaturated aldehydes: applications to the total synthesis of (+)-palitantin. J. Org. Chem. 72, 8458–8471 (2007).

    Google Scholar 

  64. Lelais, G. & MacMillan, D. W. C. Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichimica Acta 39, 79–87 (2006).

    CAS  Google Scholar 

  65. Austin, J. F., Kim, S.-G., Sinz, C. F., Xiao, W.-J. & MacMillan, D. W. C. Enantioselective organocatalytic construction of pyrroloindolines by a cascade addition–cyclization strategy: synthesis of (–)-flustramine B. Proc. Natl Acad. Sci. USA 101, 5483–5487 (2004).

    Article  Google Scholar 

  66. Jones, S. B., Simmons, B. & MacMillan, D. W. C. Nine-step enantioselective total synthesis of (+)-minfiensine. J. Am. Chem. Soc. 131, 13606–13607 (2009).

    Article  CAS  Google Scholar 

  67. Massiot, G., Thépenier, P., Jacquier, M.-J., Le Men-Olivier, L. & Delaude, C. Normavacurine and minfiensine, two new alkaloids with C19H22N2O formula from Strychnos species. Heterocycles 29, 1435–1438 (1989).

    Article  CAS  Google Scholar 

  68. Enders, D., Hüttl, M. R. M., Grondal, C. & Raabe, G. Control of four stereocentres in a triple cascade organocatalytic reaction. Nature 441, 861–863 (2006).

    Article  CAS  Google Scholar 

  69. Enders, D., Hüttl, M. R. M., Runsink, J., Raabe, G. & Wendt, B. Organocatalytic one-pot asymmetric synthesis of functionalized tricyclic carbon frameworks from a triple-cascade/Diels-Alder sequence. Angew. Chem. Int. Ed. 46, 467–469 (2007).

    Article  CAS  Google Scholar 

  70. Enders, D., Hüttl, M. R. M., Raabe, G. & Bats, J. W. Asymmetric synthesis of polyfunctionalized mono-, bi-, and tricyclic carbon frameworks via organocatalytic domino reactions. Adv. Synth. Catal. 350, 267–279 (2008).

    Article  CAS  Google Scholar 

  71. Michrowska, A. & List, B. Concise synthesis of ricciocarpin A and discovery of a more potent analogue. Nature Chem. 1, 225–228 (2009).

    Article  CAS  Google Scholar 

  72. Wurzel, G. & Becker, H. Sesquiterpenoids from the liverwort Ricciocarpos natans. Phytochemistry 29, 2565–2568 (1990).

    Article  CAS  Google Scholar 

  73. Wurzel, G., Becker, H., Eicher, H. T. & Tiefensee, K. Molluscicidal properties of constituents from the liverwort Ricciocarpos natans and of synthetic lunularic acid derivatives. Planta Med. 56, 444–445 (1990).

    Article  CAS  Google Scholar 

  74. Simmons, B., Walji, A. M. & MacMillan, D. W. C. Cycle-specific organocascade catalysis: application to olefin hydroamination, hydro-oxidation, and amino-oxidation, and to natural product synthesis. Angew. Chem. Int. Ed. 48, 4349–4353 (2009).

    Article  CAS  Google Scholar 

  75. Beechan, C. M., Djerassi, C. & Eggert, H. Terpenoids-LXXIV: The sesquiterpenes from the soft coral sinularia mayi. Tetrahedron 34, 2503–2508 (1978).

    Article  CAS  Google Scholar 

  76. Moriera, I. C., Lago, J. H. G., Young, M. C. M. & Roque, N. F. Antifungal aromadendrane sesquiterpenoids from the leaves of Xylopia brasiliensis. J. Braz. Chem. Soc. 14, 828–831 (2003).

    Article  Google Scholar 

  77. Wu, T., Chan, Y. & Leu, Y. The constituents of the root and stem of Aristolochia heterophylla hemsl. Chem. Pharm. Bull. 3, 357–361 (2000).

    Article  Google Scholar 

  78. Hoffmann, S., Seayad, A. M. & List, B. A powerful Brønsted acid catalyst for the organocatalytic asymmetric transfer hydrogenation of imines. Angew. Chem. Int. Ed. 44, 7424–7427 (2005).

    Article  CAS  Google Scholar 

  79. Rueping, M., Sugiono, E., Azap, C., Theissmann, T. & Bolte M. Enantioselective Brønsted acid catalyzed transfer hydrogenation: organocatalytic reduction of imines. Org. Lett. 7, 3781–3783 (2005).

    Article  CAS  Google Scholar 

  80. Rueping, M., Antonchick, A. P. & Theissmann, T. A Highly enantioselective Brønsted acid catalyzed cascade reaction: organocatalytic transfer hydrogenation of quinolines and their application in the synthesis of alkaloids. Angew. Chem. Int. Ed. 45, 3683–3686 (2006).

    Article  CAS  Google Scholar 

  81. Rueping, M. & Antonchick, A. P. Organocatalytic enantioselective reduction of pyridines. Angew. Chem. Int. Ed. 46, 4562–4565 (2007).

    Article  CAS  Google Scholar 

  82. Sklenicka, H. M. et al. Stereoselective formal [3 + 3] cycloaddition approach to cis-1-azadecalins and synthesis of (–)-4a, 8a-diepi-pumiliotoxin C. Evidence for the first highly stereoselective 6π-electron electrocyclic ring closures of 1-azatrienes. J. Am. Chem. Soc. 124, 10435–10442 (2002).

    Article  CAS  Google Scholar 

  83. Shibasaki, M. & Kanai, M. Synthetic strategies for oseltamivir phosphate. Eur. J. Org. Chem. 1839–1850 (2008).

  84. Ishikawa, H., Suzuki, T. & Hayashi, Y. High-yielding synthesis of the anti-influenza neuramidase inhibitor (–)-oseltamivir by three “one-pot” operations. Angew. Chem. Int. Ed. 48, 1304–1307 (2009).

    Article  CAS  Google Scholar 

  85. Enders, D., Luettgen, K. & Narine, A. A. Asymmetric sulfa-Michael additions. Synthesis 959–980 (2007).

  86. Hoashi, Y., Yabuta, T. & Takemoto, Y. Bifunctional thiourea-catalyzed enantioselective double Michael reaction of γ, δ-unsaturated β-ketoester to nitroalkene: asymmetric synthesis of (–)-epibatidine. Tetrahedron Lett. 45, 9185–9188 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christoph Grondal or Dieter Enders.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grondal, C., Jeanty, M. & Enders, D. Organocatalytic cascade reactions as a new tool in total synthesis. Nature Chem 2, 167–178 (2010). https://doi.org/10.1038/nchem.539

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing