Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solution structure of a DNA double helix with consecutive metal-mediated base pairs

Abstract

Metal-mediated base pairs represent a powerful tool for the site-specific functionalization of nucleic acids with metal ions. The development of applications of the metal-modified nucleic acids will depend on the availability of structural information on these double helices. We present here the NMR solution structure of a self-complementary DNA oligonucleotide with three consecutive imidazole nucleotides in its centre. In the absence of transition-metal ions, a hairpin structure is adopted with the artificial nucleotides forming the loop. In the presence of Ag(i) ions, a duplex comprising three imidazole–Ag+–imidazole base pairs is formed. Direct proof for the formation of metal-mediated base pairs was obtained from 1J(15N,107/109Ag) couplings upon incorporation of 15N-labelled imidazole. The duplex adopts a B-type conformation with only minor deviations in the region of the artificial bases. This work represents the first structural characterization of a metal-modified nucleic acid with a continuous stretch of metal-mediated base pairs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Description of the oligonucleotide system under investigation.
Figure 2: Comparison of sections of the [1H,1H]-NOESY and [1H,15N]-HSQC spectra of the hairpin (left) and metallated helix (right).
Figure 3: Direct evidence for the formation of imidazole–Ag+–imidazole base pairs.
Figure 4: Lowest-energy structure of the duplex containing the Ag+-mediated imidazole base pairs in its centre.
Figure 5: According to the base-pair parameters, the Ag(i)-containing double helix adopts a regular B-DNA structure with only slight deviations (see also Supplementary Fig. S3).

Similar content being viewed by others

References

  1. Niemeyer, C. M. & Mirkin, C. A. Nanobiotechnology (Wiley-VCH, 2004).

    Book  Google Scholar 

  2. Müller, J. Metal-ion-mediated base pairs in nucleic acids. Eur. J. Inorg. Chem. 3749–3763 (2008).

  3. Tanaka, K. & Shionoya, M. Programmable metal assembly on bio-inspired templates. Coord. Chem. Rev. 251, 2732–2742 (2007).

    Article  CAS  Google Scholar 

  4. Clever, G. H., Kaul, C. & Carell, T. DNA-metal base pairs. Angew. Chem. Int. Ed. 46, 6226–6236 (2007).

    Article  CAS  Google Scholar 

  5. He, W., Franzini, R. M. & Achim, C. Metal-containing nucleic acid structures based on synergetic hydrogen and coordination bonding. Prog. Inorg. Chem. 55, 545–611 (2007).

    Google Scholar 

  6. Weizman, H. & Tor, Y. 2,2'-Bipyridine Ligandoside: A novel building block for modifying DNA with intra-duplex metal complexes. J. Am. Chem. Soc. 123, 3375–3376 (2001).

    Article  CAS  Google Scholar 

  7. Meggers, E., Holland, P. L., Tolman, W. B., Romesberg, F. E. & Schultz, P. G. A novel copper-mediated DNA base pair. J. Am. Chem. Soc. 122, 10714–10715 (2000).

    Article  CAS  Google Scholar 

  8. Heuberger, B. D., Shin, D. & Switzer, C. Two Watson-Crick-like metallo base-pairs. Org. Lett. 10, 1091–1094 (2008).

    Article  CAS  Google Scholar 

  9. Polonius, F.-A. & Müller, J. An artificial base pair, mediated by hydrogen bonding and metal-ion binding. Angew. Chem. Int. Ed. 46, 5602–5604 (2007).

    Article  CAS  Google Scholar 

  10. Clever, G. H. & Carell, T. Controlled stacking of 10 transition-metal ions inside a DNA duplex. Angew. Chem. Int. Ed. 46, 250–253 (2007).

    Article  CAS  Google Scholar 

  11. Switzer, C., Sinha, S., Kim, P. H. & Heuberger, B. D. A purine-like nickel(ii) base pair for DNA. Angew. Chem. Int. Ed. 44, 1529–1532 (2005).

    Article  CAS  Google Scholar 

  12. Tanaka, K., Tengeiji, A., Kato, T., Toyama, N. & Shionoya, M. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    Article  CAS  Google Scholar 

  13. Tanaka, K. et al. Programmable self-assembly of metal ions inside artificial DNA duplexes. Nature Nanotech. 1, 190–194 (2006).

    Article  CAS  Google Scholar 

  14. Tanaka, Y. et al. 15N–15N J-coupling across HgII: Direct observation of HgII-mediated T–T base pairs in a DNA duplex. J. Am. Chem. Soc. 129, 244–245 (2007).

    Article  CAS  Google Scholar 

  15. Ono, A. et al. Specific interactions between Ag(i) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 4825–4827 (2008).

  16. Wettig, S. D., Wood, D. O., Aich, P. & Lee, J. S. M-DNA: A novel metal ion complex of DNA studied by fluorescence techniques. J. Inorg. Biochem. 99, 2093–2101 (2005).

    Article  CAS  Google Scholar 

  17. Johannsen, S., Paulus, S., Düpre, N., Müller, J. & Sigel, R. K. O. Using in vitro transcription to construct scaffolds for one-dimensional arrays of mercuric ions. J. Inorg. Biochem. 102, 1141–1151 (2008).

    Article  CAS  Google Scholar 

  18. Schlegel, M. K., Zhang, L., Pagano, N. & Meggers, E. Metal-mediated base pairing within the simplified nucleic acid GNA. Org. Biomol. Chem. 7, 476–482 (2009).

    Article  CAS  Google Scholar 

  19. Franzini, R. M. et al. Metal binding to bipyridine-modified PNA. Inorg. Chem. 45, 9798–9811 (2006).

    Article  CAS  Google Scholar 

  20. Küsel, A. et al. Metal binding within a peptide-based nucleobase stack with tuneable double-strand topology. Eur. J. Inorg. Chem. 4317–4324 (2005).

  21. Atwell, S., Meggers, E., Spraggon, G. & Schultz, P. G. Structure of a copper-mediated base pair in DNA. J. Am. Chem. Soc. 123, 12364–12367 (2001).

    Article  CAS  Google Scholar 

  22. Schlegel, M. K., Essen, L.-O. & Meggers, E. Duplex structure of a minimal nucleic acid. J. Am. Chem. Soc. 130, 8158–8159 (2008).

    Article  CAS  Google Scholar 

  23. Böhme, D., Düpre, N., Megger, D. A. & Müller, J. Conformational change induced by metal-ion-binding to DNA containing the artificial 1,2,4-triazole nucleoside. Inorg. Chem. 46, 10114–10119 (2007).

    Article  Google Scholar 

  24. Kuklenyik, Z. & Marzilli, L. G. Mercury(ii) site-selective binding to a DNA hairpin. Relationship of sequence-dependent intra- and interstrand cross-linking to the hairpin–duplex conformational transition. Inorg. Chem. 35, 5654–5662 (1996).

    Article  CAS  Google Scholar 

  25. Varani, G., Aboul-ela, F. & Allain, F. H.-T. NMR investigation of RNA structure. Prog. Nucl. Magn. Reson. Spectrosc. 29, 51–127 (1996).

    Article  CAS  Google Scholar 

  26. Tanaka, Y. & Ono, A. Nitrogen-15 NMR spectroscopy of N-metallated nucleic acids: insights into 15N NMR parameters and N–metal bonds. Dalton Trans. 4965–4974 (2008).

  27. Zangger, K. & Armitage, I. M. Silver and gold NMR. Met. Based Drugs 6, 239–245 (1999).

    Article  CAS  Google Scholar 

  28. Bowmaker, G. A. et al. Solid-state 109Ag CP/MAS NMR spectroscopy of some diammine silver(i) complexes. Magn. Reson. Chem. 42, 819–826 (2004).

    Article  CAS  Google Scholar 

  29. van Stein, G. C., van Koten, G., Vrieze, K., Brevard, C. & Spek, A. L. Structural investigations of silver(i) and copper(i) complexes with neutral N4 donor ligands: X-ray crystal and molecular structure of the dimer [Ag2{μ-(R, S)-1,2-(py-2-CH=N)2Cy}2](O3SCF3)2 and 1H, 13C, and INEPT 109Ag and 15N NMR solution studies. J. Am. Chem. Soc. 106, 4486–4492 (1984).

    Article  CAS  Google Scholar 

  30. van Stein, G. C. et al. Group 11 metal ions in poly(donor atom) environments: X-ray crystal and molecular structure of [M((R, S)-1,2-(5-R-thio-2-CH=N)2-c-Hx)2](O3SCF3) (M = Ag(i), R = Me, thio = Thiophene, c-Hx = Cyclohexane) and silver(i) and copper(i) coordination properties in solution (1H, 109Ag, and 15N NMR). Inorg. Chem. 24, 1367–1375 (1985).

    Article  CAS  Google Scholar 

  31. Lu, X.-J. & Olson, W. K. 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res. 31, 5108–5121 (2003).

    Article  CAS  Google Scholar 

  32. Chandrasekaran, R. & Arnott, S. The structure of B-DNA in oriented fibers. J. Biomol. Struct. Dyn. 13, 1015–1027 (1996).

    Article  CAS  Google Scholar 

  33. Liu, X. et al. Three novel silver complexes with ligand-unsupported argentophilic interactions and their luminescent properties. Inorg. Chem. 45, 3679–3685 (2006).

    Article  CAS  Google Scholar 

  34. Mallajosyula, S. S. & Pati, S. K. Conformational tuning of magnetic interactions in metal–DNA complexes. Angew. Chem. Int. Ed. 48, 4977–4981 (2009).

    Article  CAS  Google Scholar 

  35. Gridnev, A. A. & Mihalteva, I. M. Synthesis of 1-alkylimidazoles. Synth. Commun. 24, 1547–1555 (1994).

    Article  CAS  Google Scholar 

  36. Rolland, V., Kotera, M. & Lhomme, J. Convenient preparation of 2-deoxy-3,5-di-O-p-toluoyl-α-d-erythro-pentofuranosyl chloride. Synth. Commun. 27, 3505–3511 (1997).

    Article  CAS  Google Scholar 

  37. Güntert, P., Mumenthaler, C. & Wüthrich, K. Torsion angle dynamics for NMR structure calculation with the new program Dyana. J. Mol. Biol. 273, 283–298 (1997).

    Article  Google Scholar 

  38. Schwieters, C. D., Kuszewski, J. J., Tjandra, N. & Clore, G. M. The Xplor-NIH NMR molecular structure determination package. J. Magn. Reson. 160, 65–73 (2003).

    Article  CAS  Google Scholar 

  39. Müller, J., Böhme, D., Lax, P., Morell Cerdà, M. & Roitzsch, M. Metal ion coordination to azole nucleosides. Chem. Eur. J. 11, 6246–6253 (2005).

    Article  Google Scholar 

  40. Koradi, R., Billeter, M. & Wüthrich, K. MOLMOL: A program for display and analysis of macromolecular structures. J. Mol. Graphics 14, 51–55 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by the European ERAnet-Chemistry, the Swiss National Science Foundation (20EC21-112708 and 200021-124834 to R.K.O.S.), the Swiss State Secretariat for Education and Research (R.K.O.S.), the Deutsche Forschungsgemeinschaft (MU1750/1-3 and MU1750/2-1 to JM), COST D39 and the Fonds der Chemischen Industrie (J.M.) is gratefully acknowledged. We also thank T. van der Wijst for providing us with the partial charges of protonated and unprotonated 1-methylimidazole, as well as R. Micura and K. Breuker, University of Innsbruck, for recording mass spectra.

Author information

Authors and Affiliations

Authors

Contributions

J.M. and R.K.O.S. designed research, N.M. and D.B. performed syntheses, S.J. performed the NMR experiments and structure calculations, S.J. and R.K.O.S. analysed data, and J.M., R.K.O.S., S.J. and N.M. wrote the manuscript.

Corresponding authors

Correspondence to Roland K. O. Sigel or Jens Müller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 627 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johannsen, S., Megger, N., Böhme, D. et al. Solution structure of a DNA double helix with consecutive metal-mediated base pairs. Nature Chem 2, 229–234 (2010). https://doi.org/10.1038/nchem.512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.512

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing