Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A facile route to ketene-functionalized polymers for general materials applications

Abstract

Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thermolysis of 5,5-dialkyl Meldrum's acid to a ketene, and subsequent reactivity.
Figure 2: Synthesis of Meldrum's-acid-containing monomers for radical and ring-opening methathesis polymerizations.
Figure 3: Synthesis of Meldrum's-acid-containing polymer 10 and its thermolytic properties.
Figure 4: Spectroscopic evidence for the formation of a ketene from 10.
Figure 5: Covalent attachment of fluorescent dye on µCP surface.
Figure 6: Synthesis of Meldrum's-acid-containing polynorbornene.

References

  1. Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).

    Article  CAS  Google Scholar 

  2. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  3. Segura, J. L. & Martin, N. o-Quinodimethanes: Efficient intermediates in organic synthesis. Chem. Rev. 99, 3199–3246 (1999).

    Article  CAS  Google Scholar 

  4. Deeter, G. A., Venkataraman, D., Kampf, J. W. & Moore, J. S. Reactivity of disubstituted benzocyclobutenes: Model compounds of cross-linkable high-performance polymers. Macromolecules 27, 2647–2657 (1994).

    Article  CAS  Google Scholar 

  5. Kraus, A., Gugel, A., Belik, P., Walter, M. & Müllen, K. Covalent attachment of various substituents in closest proximity to the C60-core: A broad synthetic approach to stable fullerene derivatives. Tetrahedron 51, 9927–9940 (1995).

    Article  CAS  Google Scholar 

  6. Harth, Eva. et al. A facile approach to architecturally defined nanoparticles via intramolecular chain collapse. J. Am. Chem. Soc. 124, 8653–8660 (2002).

    Article  CAS  Google Scholar 

  7. Kim, Y., Pyun, J., Fréchet, J. M. J., Hawker, C. J. & Frank, C. W. The dramatic effect of architecture on the self-assembly of block copolymers at interfaces. Langmuir 21, 10444–10458 (2005).

    Article  CAS  Google Scholar 

  8. Pyun, J., Tang, C., Kowalewski, T., Fréchet, J. M. J. & Hawker, C. J. Synthesis and direct visualization of block copolymers composed of different macromolecular architectures. Macromolecules 38, 2674–2685 (2005).

    Article  CAS  Google Scholar 

  9. Ryu, D. Y., Shin, K., Drockenmuller, E., Hawker, C. J. & Russell, T. P. A generalized approach to the modification of solid surfaces. Science 308, 236–239 (2005).

    Article  CAS  Google Scholar 

  10. Leiston-Belanger, J. M., Russell, T. P., Drockenmuller, E. & Hawker, C. J. A thermal and manufacturable approach to stabilized diblock copolymer templates. Macromolecules 38, 7676–7683 (2005).

    Article  CAS  Google Scholar 

  11. Wang, Z. Y., Kuang, L., Meng, X. S. & Gao, J. P. New route to incorporation of [60]fullerene into polymers via the benzocyclobutenone group. Macromolecules 31, 5556–5558 (1998).

    Article  CAS  Google Scholar 

  12. Staudinger, H. Ketenes, a new compound class. Ber. Dtsch. Chem. Ges. 38, 1735–1739 (1905).

    Article  Google Scholar 

  13. Tidwell, T. Ketenes (John Wiley & Sons, 2006).

    Google Scholar 

  14. Tidwell, T. T. Ketene chemistry after 100 years: Ready for a new century. Eur. J. Org. Chem., 563–576 (2006).

  15. Zarras, P. & Vogl, O. Ketenes and bisketenes as polymer intermediates. Prog. Polym. Sci. 16, 173–201 (1991).

    Article  CAS  Google Scholar 

  16. Staudinger, H., Felix, F., Meyer, P., Harder, H. Helv. Chim. Acta, 8, 322–332 (1925).

    CAS  Google Scholar 

  17. Pregaglia, G., Binaghi, M. Ketene polymers. Enc. Polym. Sci. Technol. 8, 45–57 (1968).

    CAS  Google Scholar 

  18. Sudo, A., Uchino, S. & Endo, T. Development of a living anionic polymerization of ethylphenylketene: A novel approach to well-defined polyester synthesis. Macromolecules 32, 1711–1713 (1999).

    Article  CAS  Google Scholar 

  19. Nagai, D., Sudo, A. & Endo, T. Anionic alternating copolymerization of ketene and aldehyde: Control of enantioselectivity by bisoxazoline-type ligand for synthesis of optically active polyesters. Macromolecules 39, 8898 (2006).

    Article  CAS  Google Scholar 

  20. Wolfgang, K., 100 years of the Wolff rearrangement. Eur. J. Org. Chem., 2193–2256 (2002).

  21. Dammel, R. R. Diazonaphthoquinone-Based Resists (SPIE Optical Engineering Press, 1993).

    Book  Google Scholar 

  22. Goodwin, A. P., et al. Synthetic micelle sensitive to IR light via a two-photon process. J. Am. Chem. Soc. 127, 9952–9953 (2005).

    Article  CAS  Google Scholar 

  23. Mynar, J. L., Goodwin, A. P., Cohen, J. A., Ma, Y., Fleming, G. R. & Fréchet, J. M. Two-photon degradable supramolecular assemblies of linear-dendritic copolymers. Chem. Commun. 2007, 2081–2082 (2007).

    Article  Google Scholar 

  24. Kumbaraci, V., Talinli, N. & Yagci, Y. Photoinduced crosslinking of polymers containing pendant hydroxyl groups by using bisbenzodioxinones. Macromol. Rapid Commun. 28, 72–77 (2007).

    Article  CAS  Google Scholar 

  25. Tasdelen, M. A., Kumbaraci, V., Talinli, N. & Yagci, Y. Photoinduced cross-linking polymerization of monofunctional vinyl monomer without conventional photoinitiator and cross-linker. Macromolecules 40, 4406–4408 (2007).

    Article  CAS  Google Scholar 

  26. Durmaz, Y. Y., Kumbaraci, V., Demirel, A. L., Talinli, N. & Yagci, Y. Graft copolymers by the combination of ATRP and photochemical acylation process by using benzodioxinones. Macromolecules 42, 3743–3749 (2009).

    Article  CAS  Google Scholar 

  27. Meldrum, A. N. A β-lactonic acid from acetone and malonic acid. J. Chem. Soc. 93, 598–601 (1908).

    Article  CAS  Google Scholar 

  28. Brown, R. F. C., Eastwood, F. W. & Harrington, K. J. Methyleneketenes and methylenecarbenes. I. Formation of arylmethyleneketenes and alkylideneketenes by pyrolysis of substituted 2,2-dimethyl-1,3-dioxan-4,6-diones. Aust. J. Chem. 27, 2373–2384 (1974).

    Article  CAS  Google Scholar 

  29. Baxter, G. J., Brown, R. F. C., Eastwood, F. W. & Harrington, K. J. Pyrolytic generation of carbonylcyclopropane (dimethylene ketene) and its dimerization to dispiro-[2,1,2,1]-octane-4,8-dione. Tetrahedron Lett. 16, 4283–4284 (1975).

    Article  Google Scholar 

  30. Hyatt, J. A. & Raynolds, P. W. Ketene cycloadditions. Org. React. 45, 159–646 (1994).

    CAS  Google Scholar 

  31. Zia-Ebrahimi, M. & Huffman, G. W. Synthesis and utility of a novel methylene Meldrum's acid precursor. Synthesis 215–218 (1996).

  32. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    Article  CAS  Google Scholar 

  33. Hiraoka, H. Photochemistry of glutaric anhydride type polymers. Macromolecules 9, 359–360 (1976).

    Article  CAS  Google Scholar 

  34. Lucas, N. C., Netto-Ferreira, J. C., Andraos, J. & Scaiano, J. C. Nucleophilicity toward ketenes: Rate constants for addition of amines to aryl ketenes in acetonitrile solution. J. Org. Chem. 66, 5016–5021 (2001).

    Article  Google Scholar 

  35. Lee, K., Park, S., Mirkin, C. A., Smith, J. C. & Mrksich, M. Protein nanoarrays generated by dip-pen nanolithography. Science 295, 1702–1705 (2002).

    Article  CAS  Google Scholar 

  36. Li, H., Muir, B. V. O., Fichet, G. & Huck, W. T. S. Nanocontact printing: A route to sub-50-nm scale chemical and biological patterning. Langmuir 19, 1963–1965 (2003).

    Article  CAS  Google Scholar 

  37. Hyun, J., Ahn, S. J., Lee, W. K., Chilkoti, A. & Zauscher, S. Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Lett. 2, 1203–1207 (2002).

    Article  CAS  Google Scholar 

  38. Christman, K. L., Schopf, E., Broyer, R. M., Li, R. C., Chen, Y. & Maynard, H. D. Positioning multiple proteins at the nanoscale with electron beam cross-linked functional polymers. J. Am. Chem. Soc. 131, 521–527 (2009).

    Article  CAS  Google Scholar 

  39. Kumar, A. & Whitesides, G. M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘ink’ followed by chemical etching. Appl. Phys. Lett. 63, 2002–2004 (1993).

    Article  CAS  Google Scholar 

  40. Campos, L. M. et al. Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry. Adv. Mater. 20, 3728–3733 (2008).

    Article  CAS  Google Scholar 

  41. Brown, R. F. C., Eastwood, F. W. & McMullen, G. L. Methyleneketenes and methylenecarbenes. VII. Evidence for the pyrolytic generation of methyleneketene (propadienone). Aust. J. Chem. 30, 179–193 (1977).

    Article  CAS  Google Scholar 

  42. Buzinkai, J. F., Hrubowchak, D. M. & Smith, F. X. Two convenient methods for the generation of ‘methylene Meldrum's acid’ for Diels-Alder reactions. Tetrahedron Lett. 26, 3195–3198 (1985).

    Article  CAS  Google Scholar 

  43. Choi, T. & Grubbs, R. H. Controlled living ring-opening-metathesis polymerization by a fast-initiating ruthenium catalyst. Angew. Chem. Int. Ed. 42, 1743–1746 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.K. and B.M. gratefully acknowledge the Center for Bioactive Molecular Hybrid (CBMH) of KOSEF, the Sogang University grant (200811016), BK21 program from the Ministry of Education and Human Resources Development. F.A.L. and C.J.H. would like to thank the National Science Foundation (MRSEC Program: DMR-0520415, Chemistry Program: CHE-0514031, Graduate Fellowship) and the DOD (Graduate Fellowship) for financial support. Please address correspondences to C.J.H.

Author information

Authors and Affiliations

Authors

Contributions

F.A.L., B.M., M.K. and C.J.H. developed the concept and conceived the experiments. F.A.L., M.K., B.M., M.H. and J.K. performed the laboratory experiments and analysed the results. L.C. and N.G. provided expertise in μCP and fluorescence microscopy, respectively. F.A.L., B.M. and C.J.H wrote the manuscript.

Corresponding authors

Correspondence to Bongjin Moon or Craig J. Hawker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2350 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leibfarth, F., Kang, M., Ham, M. et al. A facile route to ketene-functionalized polymers for general materials applications. Nature Chem 2, 207–212 (2010). https://doi.org/10.1038/nchem.538

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing