Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A versatile approach to high-throughput microarrays using thiol-ene chemistry

An Addendum to this article was published on 23 April 2012

This article has been updated

Abstract

Microarray technology has become extremely useful in expediting the investigation of large libraries of materials in a variety of biomedical applications, such as in DNA chips, protein and cellular microarrays. In the development of cellular microarrays, traditional high-throughput printing strategies on stiff, glass substrates and non-covalent attachment methods are limiting. We have developed a facile strategy to fabricate multifunctional high-throughput microarrays embedded at the surface of a hydrogel substrate using thiol-ene chemistry. This user-friendly method provides a platform for the immobilization of a combination of bioactive and diagnostic molecules, such as peptides and dyes, at the surface of poly(ethylene glycol)-based hydrogels. The robust and orthogonal nature of thiol-ene chemistry allows for a range of covalent attachment strategies in a fast and reliable manner, and two complementary strategies for the attachment of active molecules are demonstrated.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: General procedure for the fabrication of hydrogel microarrays using thiol-ene chemistry.
Figure 2: Thiol- and alkene-functional hydrogel microarrays.
Figure 3: Direct coupling of cell-adhesive peptides to microarrays.
Figure 4: Synthesis of orthogonal heterobifunctional crosslinkers and their postfunctionalization in printed microarrays.
Figure 5: Orthogonal ligation reaction on a single microarray using thiol-ene, hydrazone and NHS-active ester chemistries.
Figure 6: Combination of direct printing of peptides with orthogonal postfunctionalization on individual microarray spots.

Similar content being viewed by others

Change history

  • 13 March 2012

    The authors wish to add the following to the Acknowledgements section of this Article: "We gratefully acknowledge the use of the UCSB Laboratory for Stem Cell Biology and Engineering and funding from the California Institute for Regenerative Medicine." The online versions of the Article have been amended accordingly.

References

  1. Castel, D., Pitaval, A., Debily, M. & Gidrol, X. Cell microarrays in drug discovery. Drug Discov. Today 11, 616–622 (2006).

    Article  CAS  Google Scholar 

  2. Schulze, A. & Downward, J. Navigating gene expression using microarrays – a technology review. Nature Cell Biol. 3, 190–195 (2001).

    Article  Google Scholar 

  3. Ramsay, G. DNA chips: state-of-the-art. Nature Biotechnol. 16, 40–44 (1998).

    Article  CAS  Google Scholar 

  4. Anderson, D. et al. Biomaterial microarrays: rapid, microscale screening of polymer–cell interaction. Biomaterials 26, 4892–4897 (2005).

    Article  CAS  Google Scholar 

  5. Yliperttula, M. et al. High-throughput screening of cell responses to biomaterials. Eur. J. Pharm. Sci. 35, 151–160 (2008).

    Article  CAS  Google Scholar 

  6. Albrecht, D., Tsang, V., Sah, R. & Bhatia, S. Photo- and electropatterning of hydrogel-encapsulated living cell arrays. Lab Chip 5, 111–118 (2005).

    Article  CAS  Google Scholar 

  7. Yamada, K. M. Adhesive recognition sequences. J. Biol. Chem. 266, 12809–12812 (1991).

    CAS  PubMed  Google Scholar 

  8. Hoffman, L. & Carpenter, M. Characterization and culture of human embryonic stem cells. Nature Biotechnol. 23, 699–708 (2005).

    Article  CAS  Google Scholar 

  9. Evenram, S., Artym, V. & Yamada, K. Matrix control of stem cell fate. Cell 126, 645–647 (2006).

    Article  CAS  Google Scholar 

  10. Li, Y. et al. Hydrogels as artificial matrices for human embryonic stem cell self-renewal. J. Biomed. Mater. Res. A 79A, 1–5 (2006).

    Article  CAS  Google Scholar 

  11. Mohr, J., Depablo, J. & Palecek, S. 3-D microwell culture of human embryonic stem cells. Biomaterials 27, 6032–6042 (2006).

    Article  CAS  Google Scholar 

  12. Moeller, H. et al. A microwell array system for stem cell culture. Biomaterials 29, 752–763 (2008).

    Article  CAS  Google Scholar 

  13. Yeo, D. S. Y., Panicker, R. C., Tan, L. P. & Yao, S. Q. Strategies for immobilization of biomolecules in a microarray. Comb. Chem. High Throughput Screening 7, 213–221 (2004).

    Article  CAS  Google Scholar 

  14. Houseman, B. T., Huh, J. H., Kron, S. J. & Mrksich, M. Peptide chips for the quantitative evaluation of protein kinase activity. Nature Biotechnol. 20, 270–274 (2002).

    Article  CAS  Google Scholar 

  15. Köhn, M. et al. Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew. Chem. Int. Ed. 42, 5830–5834 (2003).

    Article  Google Scholar 

  16. Falsey, J. R. et al. Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjugate Chem. 12, 346–353 (2001).

    Article  CAS  Google Scholar 

  17. Christman, K. L., Broyer, R. M., Tolstyka, Z. P. & Maynard, H. D. Site-specific protein immobilization through N-terminal oxime linkages. J. Mater. Chem. 17, 2021–2027 (2007).

    Article  CAS  Google Scholar 

  18. Fukuda, J. et al. Micropatterned cell co-cultures using layer-by-layer deposition of extracellular matrix components. Biomaterials 27, 1479–1486 (2006).

    Article  CAS  Google Scholar 

  19. Derda, R. et al. Defined substrates for human embryonic stem cell growth identified from surface arrays. ACS Chem. Biol. 2, 347–355 (2007).

    Article  CAS  Google Scholar 

  20. Northen, T., Greving, M. & Woodbury, N. Combinatorial screening of biomimetic protein affinity materials. Adv. Mater. 20, 4691–4697 (2008).

    Article  CAS  Google Scholar 

  21. Tweedie, C., Anderson, D., Langer, R. & Van Vliet, K. Combinatorial material mechanics: high-throughput polymer synthesis and nanomechanical screening. Adv. Mater. 17, 2599–2604 (2005).

    Article  CAS  Google Scholar 

  22. Anderson, D., Lynn, D. & Langer, R. Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery. Angew. Chem. Int. Ed. 42, 3153–3158 (2003).

    Article  CAS  Google Scholar 

  23. Flaim, C., Chien, S. & Bhatia, S. An extracellular matrix microarray for probing cellular differentiation. Nature Methods 2, 119–125 (2005).

    Article  CAS  Google Scholar 

  24. Anderson, D., Levenberg, S. & Langer, R. Nanoliter-scale synthesis of arrayed biomaterials and application to human embryonic stem cells. Nature Biotechnol. 22, 863–866 (2004).

    Article  CAS  Google Scholar 

  25. Tourniaire, G. et al. Polymer microarrays for cellular adhesion. Chem. Commun. 2118 (2006).

  26. Stadler, V. et al. Combinatorial synthesis of peptide arrays with a laser printer. Angew. Chem. Int. Ed. 47, 7132–7135 (2008).

    Article  CAS  Google Scholar 

  27. Hsiong, S. et al. Differentiation stage alters matrix control of stem cells. J. Biomed. Mater. Res. A 85A, 145–156 (2008).

    Article  CAS  Google Scholar 

  28. Saha, K. et al. Biomimetic interfacial interpenetrating polymer networks control neural stem cell behavior. J. Biomed. Mater. Res. A 81A, 240–249 (2007).

    Article  CAS  Google Scholar 

  29. Heyries, K. A., Blum, L. J. & Marquette, C. A. Direct poly(dimethylsiloxane) surface functionalization with vinyl modified DNA. Chem. Mater. 20, 1251–1253 (2008).

    Article  CAS  Google Scholar 

  30. Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004–2021 (2001).

    Article  CAS  Google Scholar 

  31. Campos, L. et al. Highly versatile and robust materials for soft imprint lithography based on thiol-ene click chemistry. Adv. Mater. 20, 3728–3733 (2008).

    Article  CAS  Google Scholar 

  32. Cushing, M. C. & Anseth, K. Hydrogel cell cultures. Science 316, 1133–1134 (2007).

    Article  CAS  Google Scholar 

  33. Hoyle, C., Lee, T. & Roper, T. Thiol-enes: chemistry of the past with promise for the future. J. Polym. Sci., Part A: Polym. Chem. 42, 5301–5338 (2004).

    Article  CAS  Google Scholar 

  34. Killops, K. L., Campos, L. M. & Hawker, C. J. Robust, efficient, and orthogonal synthesis of dendrimers via thiol-ene ‘click’ chemistry. J. Am. Chem. Soc. 130, 5062–5064 (2008).

    Article  CAS  Google Scholar 

  35. Campos, L. M. et al. Development of thermal and photochemical strategies for thiol-ene click polymer functionalization. Macromolecules 41, 7063–7070 (2008).

    Article  CAS  Google Scholar 

  36. Rydholm, A., Reddy, S., Anseth, K. & Bowman, C. Development and characterization of degradable thiol-allyl ether photopolymers. Polymer 48, 4589–4600 (2007).

    Article  CAS  Google Scholar 

  37. Polizzotti, B. D., Fairbanks, B. D. & Anseth, K. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules 9, 1084–1087 (2008).

    Article  CAS  Google Scholar 

  38. Ruoslahti, E. RGD and other recognition sequences for integrins. Annu. Rev. Cell Dev. Biol. 12, 697–715 (1996).

    Article  CAS  Google Scholar 

  39. Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309, 30–33 (1984).

    Article  CAS  Google Scholar 

  40. Dawson, P. E., Churchill, M. J., Ghadiri, M. R. & Kent, S. B. H. Modulation of reactivity in native chemical ligation through the use of thiol additives. J. Am. Chem. Soc. 119, 4325–4329 (1997).

    Article  CAS  Google Scholar 

  41. Shao, J. & Tam, J. P. Unprotected peptides as building-blocks for the synthesis of peptide dendrimers with oxime, hydrazone and thiazolidine linkages. J. Am. Chem. Soc. 117, 3893–3899 (1995).

    Article  CAS  Google Scholar 

  42. Dedola, S., Nepogodiev, S. & Field, R. Recent applications of the Cu(i)-catalysed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Org. Biomol. Chem. 5, 1006–1017 (2007).

    Article  CAS  Google Scholar 

  43. Beatty, K. E., Xie, F., Wang, Q. & Tirrell, D. A. Selective dye-labeling of newly synthesized proteins in bacterial cells. J. Am. Chem. Soc. 127, 14150–14151 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work made use of Materials Research Laboratory's Central Facilities supported by the Materials Research Science & Engineering Centers Program of the National Science Foundation (No. DMR05-20415). N.G. thanks the National Science Foundation for a Graduate Research Fellowship. L.M.C. thanks the University of California for a Presidential Fellowship. We gratefully acknowledge the use of the UCSB Laboratory for Stem Cell Biology and Engineering and funding from the California Institute for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Contributions

C.J.H, L.M.C. and N.G. contributed to the conception and experimental design. N.G. performed the experiments. B.F.L. contributed to the cell studies. M.D. contributed to the X-ray photoelectron spectroscopy experiments. N.D.T. contributed to the profilometry experiments. M.V.T., E.J.K., D.O.C. and S.T.H. contributed to experimental analysis. All authors contributed to discussion of the results and commented on the manuscript.

Corresponding author

Correspondence to Craig J. Hawker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2059 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, N., Lin, B., Campos, L. et al. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nature Chem 2, 138–145 (2010). https://doi.org/10.1038/nchem.478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing