Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Porous organic molecules

Abstract

Most synthetic materials that show molecular-scale porosity consist of one-, two- or three-dimensional networks. Porous metal-organic frameworks in particular have attracted a lot of recent attention. By contrast, discrete molecules tend to pack efficiently in the solid state, leaving as little empty space as possible, which leads to non-porous materials. This Perspective discusses recent developments with discrete organic molecules that are porous in the solid state. Such molecules, which may be either crystalline or amorphous, can be categorized as either intrinsically porous (containing permanent covalent cavities) or extrinsically porous (inefficiently packed). We focus on the possible advantages of organic molecules over inorganic or hybrid systems in terms of molecular solubility, choice of components and functionalities, and structural mobility and responsiveness in non-covalent extended solids. We also highlight the potential for 'undiscovered' porous systems among the large number of cage-like organic molecules that are already known.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Extrinsic and intrinsic porosity in crystalline organic molecules.
Figure 2: Molecular 'wall tie' strategy for stabilizing porous crystals towards desolvation.
Figure 3: Amorphous porous molecules.
Figure 4: Undiscovered porous organic molecules?

Similar content being viewed by others

References

  1. Bradshaw, D., Claridge, J. B., Cussen, E. J., Prior, T. J. & Rosseinsky, M. J. Design, chirality, and flexibility in nanoporous molecule-based materials. Acc. Chem. Res. 38, 273–282 (2005).

    CAS  PubMed  Google Scholar 

  2. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    CAS  Google Scholar 

  3. Wright, P. A. Microporous framework solids (Royal Society of Chemistry, 2007).

    Google Scholar 

  4. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    CAS  PubMed  Google Scholar 

  5. Côté, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    PubMed  Google Scholar 

  6. Jiang, J. X. et al. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 46, 8574–8578 (2007).

    CAS  Google Scholar 

  7. Barbour, L. J. Crystal porosity and the burden of proof. Chem. Commun. 1163–1168 (2006).

  8. Atwood, J. L., Barbour, L. J. & Jerga, A. Storage of methane and Freon by interstitial van der Waals confinement. Science 296, 2367–2369 (2002).

    CAS  PubMed  Google Scholar 

  9. Atwood, J. L., Barbour, L. J., Jerga, A. & Schottel, B. L. Guest transport in a nonporous organic solid via dynamic van der Waals cooperativity. Science 298, 1000–1002 (2002).

    CAS  PubMed  Google Scholar 

  10. Sudik, A. C. et al. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. J. Am. Chem. Soc. 127, 7110–7118 (2005).

    CAS  PubMed  Google Scholar 

  11. Kowalczyk, P., Brualla, L., Zywocinski, A. & Bhatia, S. K. Single-walled carbon nanotubes: Efficient nanomaterials for separation and on-board vehicle storage of hydrogen and methane mixture at room temperature? J. Phys. Chem. C 111, 5250–5257 (2007).

    CAS  Google Scholar 

  12. Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009).

    CAS  Google Scholar 

  13. Furukawa, H. et al. Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010).

    CAS  PubMed  Google Scholar 

  14. Budd, P. M. et al. Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem. Commun. 230–231 (2004).

  15. Tozawa, T. et al. Porous organic cages. Nature Mater. 8, 973–978 (2009).

    CAS  Google Scholar 

  16. Lim, S. et al. Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew. Chem. Int. Ed. 47, 3352–3355 (2008).

    CAS  Google Scholar 

  17. O'Reilly, N., Giri, N. & James, S. L. Porous liquids. Chem. Eur. J. 13, 3020–3025 (2007).

    CAS  PubMed  Google Scholar 

  18. Barrer, R. M. & Shanson, V. H. Dianin's compound as a zeolitic sorbent. J. Chem. Soc. Chem. Commun. 333–334 (1976).

  19. Imashiro, F., Yoshimura, M. & Fujiwara, T. 'Guest-free' Dianin's compound. Acta Crystallogr. C 54, 1357–1360 (1998).

    Google Scholar 

  20. Sozzani, P., Bracco, S., Comotti, A., Ferretti, L. & Simonutti, R. Methane and carbon dioxide storage in a porous van der Waals crystal. Angew. Chem. Int. Ed. 44, 1816–1820 (2005).

    CAS  Google Scholar 

  21. Gorbitz, C. H. & Gundersen, E. L-Valyl-L-alanine. Acta Crystallogr. C 52, 1764–1767 (1996).

    Google Scholar 

  22. Soldatov, D. V., Moudrakovski, I. L., Grachev, E. V. & Ripmeester, J. A. Micropores in crystalline dipeptides as seen from the crystal structure, He pycnometry, and 129Xe NMR spectroscopy. J. Am. Chem. Soc. 128, 6737–6744 (2006).

    CAS  PubMed  Google Scholar 

  23. Comotti, A., Bracco, S., Distefano, G. & Sozzani, P. Methane, carbon dioxide and hydrogen storage in nanoporous dipeptide-based materials. Chem. Commun. 284–286 (2009).

  24. Msayib, K. J. et al. Nitrogen and hydrogen adsorption by an organic microporous crystal. Angew. Chem. Int. Ed. 48, 3273–3277 (2009).

    CAS  Google Scholar 

  25. Goldberg, I. Crystal engineering of nanoporous architectures and chiral porphyrin assemblies. CrystEngComm 10, 637–645 (2008).

    CAS  Google Scholar 

  26. Hosseini, M. W. Molecular tectonics: From simple tectons to complex molecular networks. Acc. Chem. Res. 38, 313–323 (2005).

    CAS  PubMed  Google Scholar 

  27. Wuest, J. D. Engineering crystals by the strategy of molecular tectonics. Chem. Commun. 5830–5837 (2005).

  28. Day, G. M. et al. Significant progress in predicting the crystal structures of small organic molecules — a report on the fourth blind test. Acta Crystallogr. B 65, 107–125 (2009).

    CAS  PubMed  Google Scholar 

  29. Rodriguez-Albelo, L. M. et al. Zeolitic polyoxometalate-based metal-organic frameworks (Z-POMOFs): Computational evaluation of hypothetical polymorphs and the successful targeted synthesis of the redox-active Z-POMOF1. J. Am. Chem. Soc. 131, 16078–16087 (2009).

    PubMed  Google Scholar 

  30. Dalgarno, S. J., Thallapally, P. K., Barbour, L. J. & Atwood, J. L. Engineering void space in organic van der Waals crystals: calixarenes lead the way. Chem. Soc. Rev. 36, 236–245 (2007).

    CAS  PubMed  Google Scholar 

  31. Thallapally, P. K. et al. Carbon dioxide capture in a self-assembled organic nanochannels. Chem. Mater. 19, 3355–3357 (2007).

    CAS  Google Scholar 

  32. Tedesco, C. et al. Methane adsorption in a supramolecular organic zeolite. Chem. Eur. J. 16, 2371–2374 (2010).

    CAS  PubMed  Google Scholar 

  33. Dewal, M. B. et al. Absorption properties of a porous organic crystalline apohost formed by a self-assembled bis-urea macrocycle. Chem. Mater. 18, 4855–4864 (2006).

    CAS  Google Scholar 

  34. Xu, Y. et al. Thermal reaction of a columnar assembled diacetylene macrocycle. J. Am. Chem. Soc. 132, 5334–5335 (2010).

    CAS  PubMed  Google Scholar 

  35. Cram, D. J. Cavitands — organic hosts with enforced cavities. Science 219, 1177–1183 (1983).

    CAS  PubMed  Google Scholar 

  36. Collet, A. Cyclotriverarylenes and cryptophanes. Tetrahedron 43, 5725–5759 (1987).

    CAS  Google Scholar 

  37. Leontiev, A. V. & Rudkevich, D. M. Encapsulation of gases in the solid state. Chem. Commun. 1468–1469 (2004).

  38. Hof, F., Craig, S. L., Nuckolls, C. & Rebek, J. Molecular encapsulation. Angew. Chem. Int. Ed. 41, 1488–1508 (2002).

    CAS  Google Scholar 

  39. Mastalerz, M. Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew. Chem. Int. Ed. 49, 5042–5053 (2010).

    CAS  Google Scholar 

  40. Hasell, T. et al. Triply interlocked covalent organic cages. Nature Chem. 2, 750–755 (2010).

    CAS  Google Scholar 

  41. Bezzu, C. G., Helliwell, M., Warren, J. E., Allan, D. R. & McKeown, N. B. Heme-like coordination chemistry within nanoporous molecular crystals. Science 327, 1627–1630 (2010).

    CAS  PubMed  Google Scholar 

  42. Rowan, S. J., Cantrill, S. J., Cousins, G. R. L., Sanders, J. K. M. & Stoddart, J. F. Dynamic covalent chemistry. Angew. Chem. Int. Ed. 41, 898–952 (2002).

    Google Scholar 

  43. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  PubMed  Google Scholar 

  44. Ghanem, B. S. et al. Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides. Macromolecules 42, 7881–7888 (2009).

    CAS  Google Scholar 

  45. Weber, J., Su, O., Antonietti, M. & Thomas, A. Exploring polymers of intrinsic microporosity — microporous, soluble polyamide and polyimide. Macromol. Rapid Commun. 28, 1871–1876 (2007).

    CAS  Google Scholar 

  46. Carta, M., Msayib, K. J., Budd, P. M. & McKeown, N. B. Novel spirobisindanes for use as precursors to polymers of intrinsic microporosity. Org. Lett. 10, 2641–2643 (2008).

    CAS  PubMed  Google Scholar 

  47. Tian, J., Thallapally, P. K., Dalgarno, S. J., McGrail, P. B. & Atwood, J. L. Amorphous molecular organic solids for gas adsorption. Angew. Chem. Int. Ed. 48, 5492–5495 (2009).

    CAS  Google Scholar 

  48. Kudo, H. et al. Molecular waterwheel (Noria) from a simple condensation of resorcinol and an alkanedial. Angew. Chem. Int. Ed. 45, 7948–7952 (2006).

    CAS  Google Scholar 

  49. Xu, D. & Warmuth, R. Edge-directed dynamic covalent synthesis of a chiral nanocube. J. Am. Chem. Soc. 130, 7520–7521 (2008).

    CAS  Google Scholar 

  50. Murakami, Y., Kikuchi, J. & Hirayama, T. Cubic azaparacyclophane. Chem. Lett. 16, 161–164 (1987).

    Google Scholar 

  51. Mastalerz, M. One-pot synthesis of a shape-persistent endo-functionalised nano-sized adamantoid compound. Chem. Commun. 4756–4758 (2008).

  52. Zhang, C. & Chen, C.-F. Synthesis and structure of a triptycene-based nanosized molecular cage. J. Org. Chem. 72, 9339–9341 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the Engineering and Physical Sciences Research Council (EPSRC) for supporting this work (EP/H000925/1). A.I.C. holds a Royal Society Wolfson Research Merit Award. A.T. is a Royal Society University Research Fellow. We thank T. Mitra for assistance with the preparation of Fig. 1b.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew I. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, J., Trewin, A. & Cooper, A. Porous organic molecules. Nature Chem 2, 915–920 (2010). https://doi.org/10.1038/nchem.873

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.873

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing