Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

N-silyl oxyketene imines are underused yet highly versatile reagents for catalytic asymmetric synthesis

Abstract

The reactions of acyl anion equivalents (d1 synthons) with carbonyl electrophiles allow for the construction of a wide range of molecules useful for the synthesis of biologically active compounds, natural products and chiral ligands. Despite their utility, significant challenges still exist for developing catalytic, enantioselective variants of these reactions. For example, the asymmetric benzoin process, arguably the most characteristic reaction of d1 synthetic equivalents, finds no general solution for reactions involving aliphatic acyl anions. In this Article, we introduce a new class of stable, isolable silyl ketene imines derived from protected cyanohydrins. These nucleophiles serve as acyl anion equivalents in Lewis base catalysed aldol addition reactions and allow for the preparation of cross-benzoin and glycolate-aldol products in high yield and with exceptional diastereo- and enantioselectivities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reaction pathways available to N-silyl oxyketene imines.
Figure 2
Figure 3: Transformations of nitriles 6ba and 11.
Figure 4: Proposed catalytic cycle for N-silyl oxyketene imine additions to aromatic aldehydes via Lewis base activation of Lewis acids.

Similar content being viewed by others

References

  1. Stork, G. & Maldonado, L. Anions of protected cyanohydrins as acyl carbanion equivalents and their use in a new synthesis of ketones. J. Am. Chem. Soc. 93, 5286–5287 (1971).

    Article  CAS  Google Scholar 

  2. Hünig, S. & Wehner, G. Nucleophile acylation with masked acyl anions; III. Synthesis of alpha-hydroxy ketones. Synthesis 391–392 (1975).

  3. Hünig, S. & Wehner, G. Nucleophilic acylation with masked acyl anions II. Synthesis 180–182 (1975).

  4. Deuchert, K., Hertenstein, U. & Hünig, S. Nucleophilic acylation with masked acyl anions. Synthesis 777–778 (1973).

  5. Albright, J. D. Reactions of acyl anion equivalents derived from cyanohydrins, protected cyanohydrins and alpha-dialkylaminonitriles. Tetrahedron 39, 3207–3233 (1983).

    Article  CAS  Google Scholar 

  6. Schrader, T. Stereoselective umpolung reactions with metalated P-chiral cyanohydrin phosphates — enantioselective synthesis of tertiary cyanohydrins. Chem. Eur. J. 3, 1273–1282 (1997).

    Article  CAS  Google Scholar 

  7. Brook, A. G. Some molecular rearrangements of organosilicon compounds. Acc. Chem. Res. 7, 77–84 (1974).

    Article  CAS  Google Scholar 

  8. Moser, W. H. The Brook rearrangement in tandem bond formation strategies. Tetrahedron 57, 2065–2084 (2001).

    Article  CAS  Google Scholar 

  9. Deglinnocenti, A., Ricci, A., Mordini, A., Reginato, G. & Colotta, V. Acylsilane-mediated nucleophilic acylation of alpha,beta-unsaturated carbonyl derivatives. Gazz. Chim. Ital. 117, 645–648 (1987).

    CAS  Google Scholar 

  10. Reich, H. J., Holtan, R. C. & Bolm, C. Acylsilane chemistry — synthesis of regioisomerically and stereoisomerically defined enol silyl ethers using acylsilanes. J. Am. Chem. Soc. 112, 5609–5617 (1990).

    Article  CAS  Google Scholar 

  11. Takeda, K. & Ohnishi, Y. Reaction of acylsilanes with potassium cyanide: Brook rearrangement under phase-transfer catalytic conditions. Tetrahedron Lett. 41, 4169–4172 (2000).

    Article  CAS  Google Scholar 

  12. Linghu, X. & Johnson, J. S. Kinetic control in direct alpha-silyloxy ketone synthesis: a new regiospecific catalyzed cross silyl benzoin reaction. Angew. Chem. Int. Ed. 42, 2534–2536 (2003).

    Article  Google Scholar 

  13. Linghu, X., Bausch, C. C. & Johnson, J. S. Mechanism and scope of the cyanide-catalyzed cross silyl benzoin reaction. J. Am. Chem. Soc. 127, 1833–1840 (2005).

    Article  Google Scholar 

  14. Nicewicz, D. A., Yates, C. M. & Johnson, J. S. Catalytic asymmetric acylation of (silyloxy)nitrile anions. Angew. Chem. Int. Ed. 43, 2652–2655 (2004).

    Article  CAS  Google Scholar 

  15. Nicewicz, D. A., Yates, C. M. & Johnson, J. S. Enantioselective cyanation/Brook rearrangement/C-acylation reactions of acylsilanes catalyzed by chiral metal alkoxides. J. Org. Chem. 69, 6548–6555 (2004).

    Article  CAS  Google Scholar 

  16. Linghu, X., Potnick, J. R. & Johnson, J. S. Metallophosphites as umpolung catalysts: the enantioselective cross silyl benzoin reaction. J. Am. Chem. Soc. 126, 3070–3071 (2004).

    Article  Google Scholar 

  17. Dunkelmann, P. et al. Development of a donor−acceptor concept for enzymatic cross-coupling reactions of aldehydes: the first asymmetric cross-benzoin condensation. J. Am. Chem. Soc. 124, 12084–12085 (2002).

    Article  Google Scholar 

  18. Giampietro, N. C., Kampf, J. W. & Wolfe, J. P. Asymmetric tandem Wittig rearrangement/aldol reactions. J. Am. Chem. Soc. 131, 12556–12557 (2009).

    Article  CAS  Google Scholar 

  19. Misaki, T., Takimoto, G. & Sugimura, T. Direct asymmetric aldol reaction of 5H-oxazol-4-ones with aldehydes catalyzed by chiral guanidines. J. Am. Chem. Soc. 132, 6286–6287 (2010).

    Article  CAS  Google Scholar 

  20. Manthorpe, J. M. & Gleason, J. L. Stereoselective generation of E- and Z-disubstituted amide enolates. Reductive enolate formation from bicylic thioglycolate lactams. J. Am. Chem. Soc. 123, 2091–2092 (2001).

    Article  CAS  Google Scholar 

  21. Das, J. P., Chechik, H. & Marek, I. A unique approach to aldol products for the creation of all-carbon quaternary stereocentres. Nature Chem. 1, 128–132 (2009).

    Article  CAS  Google Scholar 

  22. Kobayashi, S. & Horibe, M. Chiral Lewis acid controlled synthesis (CLAC synthesis): chiral Lewis acids influence the reaction course in asymmetric aldol reactions for the synthesis of enantiomeric dihydroxythioester derivatives in the presence of chiral diamines derived from L-proline. Chem. Eur. J. 3, 1472–1481 (1997).

    Article  CAS  Google Scholar 

  23. Denmark, S. E. & Chung, W. J. Lewis base activation of Lewis acids: catalytic enantioselective glycolate aldol reactions. Angew. Chem. Int. Ed. 47, 1890–1892 (2008).

    Article  CAS  Google Scholar 

  24. Denmark, S. E. & Chung, W. J. Lewis base activation of Lewis acids: catalytic, enantioselective addition of glycolate-derived silyl ketene acetals to aldehydes. J. Org. Chem. 73, 4582–4595 (2008).

    Article  CAS  Google Scholar 

  25. Denmark, S. E., Wilson, T. W., Burk, M. T. & Heemstra, J. R. Enantioselective construction of quaternary stereogenic carbons by the Lewis base catalyzed additions of silyl ketene imines to aldehydes. J. Am. Chem. Soc. 129, 14864–14865 (2007).

    Article  CAS  Google Scholar 

  26. Mermerian, A. H. & Fu, G. C. Nucleophile-catalyzed asymmetric acylations of silyl ketene imines: application to the enantioselective synthesis of verapamil. Angew. Chem. Int. Ed. 44, 949–952 (2005).

    Article  CAS  Google Scholar 

  27. Cunico, R. F. & Kuan, C. P. On the metalation silylation of O-trimethylsilyl aldehyde cyanohydrins. J. Org. Chem. 57, 1202–1205 (1992).

    Article  CAS  Google Scholar 

  28. Dinizo, S. E., Freerksen, R. W., Pabst, W. E. & Watt, D. S. Synthesis of alpha-alkoxyacrylonitriles using substituted diethyl cyanomethylphosphonates. J. Org. Chem. 41, 2846–2849 (1976).

    Article  CAS  Google Scholar 

  29. Krimen, L. I. & Cota, D. J. Ritter reaction. Org. React. 17, 213–325 (1969).

    CAS  Google Scholar 

  30. Watt, D. S. The silylation of nitrile anions — silyl ketene imines. Synth. Commun. 4, 127–132 (1974).

    Article  CAS  Google Scholar 

  31. Watt, D. S. Oxidative decyanation of arylacetonitriles — synthesis of ligusticumic acid. J. Org. Chem. 39, 2799–2800 (1974).

    Article  CAS  Google Scholar 

  32. Belousova, L. I., Kruglaya, O. A., Kalikhman, I. D. & Vyazankin, N. S. Alpha-germylated nitriles. J. Gen. Chem. USSR 51, 678–683 (1981).

    Google Scholar 

  33. Denmark, S. E. & Heemstra, J. R. Lewis base activation of Lewis acids. Vinylogous aldol addition reactions of conjugated N,O-silyl ketene acetals to aldehydes. J. Am. Chem. Soc. 128, 1038–1039 (2006).

    Article  CAS  Google Scholar 

  34. Denmark, S. E. & Wynn, T. Lewis base activation of Lewis acids: catalytic enantioselective allylation and propargylation of aldehydes. J. Am. Chem. Soc. 123, 6199–6200 (2001).

    Article  CAS  Google Scholar 

  35. Denmark, S. E. & Heemstra, J. R. Lewis base activation of Lewis acids. Catalytic enantioselective addition of silyl enol ethers of achiral methyl ketones to aldehydes. Org. Lett. 5, 2303–2306 (2003).

    Article  CAS  Google Scholar 

  36. Denmark, S. E. & Fan, Y. Catalytic, enantioselective alpha-additions of isocyanides: Lewis base catalyzed Passerini-type reactions. J. Org. Chem. 70, 9667–9676 (2005).

    Article  CAS  Google Scholar 

  37. Denmark, S. E., Beutner, G. L., Wynn, T. & Eastgate, M. D. Lewis base activation of Lewis acids: catalytic, enantioselective addition of silyl ketene acetals to aldehydes. J. Am. Chem. Soc. 127, 3774–3789 (2005).

    Article  CAS  Google Scholar 

  38. Denmark, S. E. & Beutner, G. L. Lewis base activation of Lewis acids. Vinylogous aldol reactions. J. Am. Chem. Soc. 125, 7800–7801 (2003).

    Article  CAS  Google Scholar 

  39. Denmark, S. E. & Heemstra, J. R. Lewis base activation of Lewis acids: catalytic, enantioselective vinylogous aldol addition reactions. J. Org. Chem. 72, 5668–5688 (2007).

    Article  CAS  Google Scholar 

  40. Denmark, S. E. & Beutner, G. L. Lewis base catalysis in organic synthesis. Angew. Chem. Int. Ed. 47, 1560–1638 (2008).

    Article  CAS  Google Scholar 

  41. Denmark, S. E. & Wilson, T. W. Construction of quarternary stereogenic carbon centers by the Lewis base catalyzed conjugate addition of silyl ketene imines to α,β-unsaturated aldehydes and ketones. Synlett. 1723–1728 (2010).

  42. Larock, R. C. Comprehensive Organic Transformations 2nd edn (Wiley-VCH, 1999).

  43. Patai, S. The Chemistry of Triple-Bonded Functional Groups (Wiley-VCH, 1994).

  44. Manetto, A. et al. Independent generation of C5’-nucleosidyl radicals in thymidine and 2’-deoxyguanosine. J. Org. Chem. 72, 3659–3666 (2007).

    Article  CAS  Google Scholar 

  45. Denmark, S. E., Eklov, B. M., Yao, P. J. & Eastgate, M. D. On the mechanism of Lewis base catalyzed aldol addition reactions: kinetic and spectroscopic investigations using rapid-injection NMR. J. Am. Chem. Soc. 131, 11770–11787 (2009).

    Article  CAS  Google Scholar 

  46. Conceicao, G. J. A., Moran, P. J. S. & Rodrigues, J. A. R. Highly efficient extractive biocatalysis in the asymmetric reduction of an acyclic enone by the yeast Pichia stipitis. Tetrahedron Asymm. 14, 43–45 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Science Foundation (NSF CHE-0414440 and 0717989) for financial support. T.W.W. thanks Abbott Laboratories for a Graduate Fellowship in Synthetic Organic Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

T.W.W. planned and carried out the experimental work. S.E.D. initiated and directed the project. The manuscript was written jointly by the authors.

Corresponding author

Correspondence to Scott E. Denmark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2104 kb)

Supplementary information

Crystallographic data for compound 6da (CIF 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denmark, S., Wilson, T. N-silyl oxyketene imines are underused yet highly versatile reagents for catalytic asymmetric synthesis. Nature Chem 2, 937–943 (2010). https://doi.org/10.1038/nchem.857

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.857

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing