Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of polyynes to model the sp-carbon allotrope carbyne

Abstract

Carbyne is an allotrope of carbon composed of sp-hybridized carbon atoms. Although its formation in the laboratory is suggested, no well-defined sample is described. Interest in carbyne and its potential properties remains intense because of, at least in part, technological breakthroughs offered by other carbon allotropes, such as fullerenes, carbon nanotubes and graphene. Here, we describe the synthesis of a series of conjugated polyynes as models for carbyne. The longest of the series consists of 44 contiguous acetylenic carbons, and it maintains a framework clearly composed of alternating single and triple bonds. Spectroscopic analyses for these polyynes reveal a distinct trend towards a finite gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital for carbyne, which is estimated to be 485 nm (2.56 eV). Even the longest members of this series of polyynes are not particularly sensitive to light, moisture or oxygen, and they can be handled and characterized under normal laboratory conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Spectroscopic and crystallographic characterization of polyynes 1a–1j.

Similar content being viewed by others

References

  1. Mannion, A. M. Carbon and its Domestication (Springer, 2006).

    Book  Google Scholar 

  2. Pierson, H. O. Handbook of Carbon, Graphite, Diamond and Fullerenes – Properties, Processing and Applications (William Andrew Publishing/Noyes, 1993).

    Google Scholar 

  3. Falcao, E. H. L. & Wudl, F. Carbon allotropes: beyond graphite and diamond. J. Chem. Technol. Biotechnol. 82, 524–531 (2007).

    Article  CAS  Google Scholar 

  4. Webster, A. Carbyne as a possible constituent of the interstellar dust. Mon. Not. R. Astron. Soc. 192, 7–9 (1980).

    Article  Google Scholar 

  5. Hayatsu, R., Scott, R. G., Studier, M. H., Lewis, R. S. & Anders, E. Carbynes in meteorites: detection, low-temperature origin, and implications for interstellar molecules. Science 209, 1515–1518 (1980).

    Article  CAS  Google Scholar 

  6. El Goresy, A. & Donnay, G. A new allotropic form of carbon from the Ries crater. Science 161, 363–364 (1968).

    Article  CAS  Google Scholar 

  7. Lagow, R. J. et al. Synthesis of linear acetylenic carbon: the ‘sp’ carbon allotrope. Science 267, 362–367 (1995).

    Article  CAS  Google Scholar 

  8. Cataldo, F. Polyynes: Synthesis, Properties and Applications (Taylor & Francis, 2005).

    Book  Google Scholar 

  9. Chalifoux, W. A. & Tykwinski, R. R. Synthesis of extended polyynes: toward carbyne. C. R. Chim. 12, 341–358 (2009).

    Article  CAS  Google Scholar 

  10. Eastmond, R., Johnson, T. R. & Walton, D. R. M. Silylation as a protective method for terminal alkynes in oxidative couplings. Tetrahedron 28, 4601–4616 (1972).

    Article  CAS  Google Scholar 

  11. Zheng, Q. et al. A synthetic breakthrough into an unanticipated stability regime: a series of isolable complexes in which C6, C8, C10, C12, C16, C20, C24, and C28 polyynediyl chains span two platinum atoms. Chem. Eur. J. 12, 6486–6505 (2006).

    Article  CAS  Google Scholar 

  12. Khuong, T.-A. V., Zepeda, G., Ruiz, R., Khan, S. I. & Garcia-Garibay, M. A. Molecular compasses and gyroscopes: engineering molecular crystals with fast internal rotation. Cryst. Growth Des. 4, 15–18 (2004).

    Article  CAS  Google Scholar 

  13. Jahnke, E. & Tykwinski, R. R. The Fritsch–Buttenberg–Wiechell rearrangement: modern applications for an old reaction. Chem. Commun. 46, 3235–3249 (2010).

    Article  CAS  Google Scholar 

  14. Eglinton, G. & Galbraith, A. R. Cyclic diynes. Chem. Ind. (London) 737–738 (1956).

  15. Siemsen, P., Livingston, R. C. & Diederich, F. Acetylenic coupling: a powerful tool in molecular construction. Angew. Chem. Int. Ed. 39, 2633–2657 (2000).

    Article  Google Scholar 

  16. Haley, M. M. et al. One-pot desilylation/dimerization of ethynyl- and butadiynyltrimethylsilanes. Synthesis of tetrayne-linked dehydrobenzoannulenes. Tetrahedron Lett. 38, 7483–7486 (1997).

    Article  CAS  Google Scholar 

  17. Wang, C., Batsanov, A. S., West, K. & Bryce, M. R. Synthesis and crystal structures of isolable terminal aryl hexatriyne and octatetrayne derivatives: Ar–(C≡C)nH (n=3, 4). Org. Lett. 10, 3069–3072 (2008).

    Article  CAS  Google Scholar 

  18. Hay, A. S. Oxidative coupling of acetylenes II. J. Org. Chem. 27, 3320–3321 (1962).

    Article  CAS  Google Scholar 

  19. Schermann, G., Grösser, T., Hampel, F. & Hirsch, A. Dicyanopolyynes: a homologous series of end-capped linear sp carbon. Chem. Eur. J. 3, 1105–1112 (1997).

    Article  CAS  Google Scholar 

  20. Eisler, S. et al. Polyynes as a model for carbyne: synthesis, physical properties, and nonlinear optical response. J. Am. Chem. Soc. 127, 2666–2676 (2005).

    Article  CAS  Google Scholar 

  21. Gibtner, T., Hampel, F., Gisselbrecht, J.-P. & Hirsch, A. End-cap stabilized oligoynes: model compounds for the linear sp carbon allotrope carbyne. Chem. Eur. J. 8, 408–432 (2002).

    Article  CAS  Google Scholar 

  22. Mohr, W., Stahl, J., Hampel, F. & Gladysz, J. A. Synthesis, structure, and reactivity of sp carbon chains with bis(phosphine) pentafluorophenylplatinum endgroups: butadiynediyl (C4) through hexadecaoctaynediyl (C16) bridges, and beyond. Chem. Eur. J. 9, 3324–3340 (2003).

    Article  CAS  Google Scholar 

  23. Meier, H., Stalmach, U. & Kolshorn, H. Effective conjugation length and UV/vis spectra of oligomers. Acta Polym. 48, 379–384 (1997).

    Article  CAS  Google Scholar 

  24. Martin, R. E. & Diederich, F. Linear monodisperse π-conjugated oligomers: model compounds for polymers and more. Angew. Chem. Int. Ed. 38, 1350–1377 (1999).

    Article  Google Scholar 

  25. Hoffmann, R. How chemistry and physics meet in the solid state. Angew. Chem. Int. Ed. 26, 846–878 (1987).

    Article  Google Scholar 

  26. Chalifoux, W. A., McDonald, R., Ferguson, M. J. & Tykwinski, R. R. tert-Butyl-end-capped polyynes: crystallographic evidence of reduced bond-length alternation. Angew. Chem. Int. Ed. 48, 7915–7919 (2009).

    Article  CAS  Google Scholar 

  27. Szafert, S. & Gladysz, J. A. Carbon in one dimension: structural analysis of the higher conjugated polyynes. Chem. Rev. 103, 4175–4205 (2003).

    Article  CAS  Google Scholar 

  28. Szafert, S. & Gladysz, J. A. Update 1 of: Carbon in one dimension: structural analysis of the higher conjugated polyynes. Chem. Rev. 106, PR1–PR33 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Alberta and the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery Grant program. W.A.C. thanks the NSERC (Postgraduate Scholarship-D) and the Alberta Ingenuity Fund for scholarship support. We also thank F. Marsiglio for discussions and M. Ferguson and R. McDonald for solving the X-ray structures for 4f and 1b, respectively.

Author information

Authors and Affiliations

Authors

Contributions

W.A.C. designed the experiments, and performed the syntheses, characterization and property studies. W.A.C. and R.R.T co-wrote the paper. R.R.T conceived the project.

Corresponding author

Correspondence to Rik R. Tykwinski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 3724 kb)

Supplementary information

Crystallographic data for compound 1b (CIF 29 kb)

Supplementary information

Crystallographic data for compound 4f (CIF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chalifoux, W., Tykwinski, R. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nature Chem 2, 967–971 (2010). https://doi.org/10.1038/nchem.828

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.828

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing