Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases

Abstract

Meroterpenoids are hybrid natural products of both terpenoid and polyketide origin. We identified a biosynthetic gene cluster that is responsible for the production of the meroterpenoid pyripyropene in the fungus Aspergillus fumigatus through reconstituted biosynthesis of up to five steps in a heterologous fungal expression system. The cluster revealed a previously unknown terpene cyclase with an unusual sequence and protein primary structure. The wide occurrence of this sequence in other meroterpenoid and indole–diterpene biosynthetic gene clusters indicates the involvement of these enzymes in the biosynthesis of various terpenoid-bearing metabolites produced by fungi and bacteria. In addition, a novel polyketide synthase that incorporated nicotinyl-CoA as the starter unit and a prenyltransferase, similar to that in ubiquinone biosynthesis, was found to be involved in the pyripyropene biosynthesis. The successful production of a pyripyropene analogue illustrates the catalytic versatility of these enzymes for the production of novel analogues with useful biological activities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative fungal meroterpenoids and their biological activities.
Figure 2: Proposed biosynthetic pathway of pyripyropene A (9) in A. fumigatus.
Figure 3: The pyripyropene biosynthetic gene cluster (pyr cluster) identified from A. fumigatus.
Figure 4: Products isolated from coexpression experiments.
Figure 5: Functional analyses of Pyr4 in vitro.
Figure 6: A novel meroterpenoid (12) formed through HPhPO (11) from benzoic acid by the pyripyropene biosynthetic machinery.

Similar content being viewed by others

References

  1. Christianson, D. W. Structural biology and chemistry of the terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    Article  CAS  Google Scholar 

  2. Fischbach, M. A. & Walsh, C. T. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106, 3468–3496 (2006).

    Article  CAS  Google Scholar 

  3. Geris, R. & Simpson, T. J. Meroterpenoids produced by fungi. Nat. Prod. Rep. 26, 1063–1097 (2009).

    Article  CAS  Google Scholar 

  4. Ōmura, S., Tomoda, H., Kim, Y. K. & Nishida, H. Pyripyropenes, highly potent inhibitors of acyl-CoA : cholesterol acyltransferase produced by Aspergillus fumigatus. J. Antibiot. 46, 1168–1169 (1993).

    Article  Google Scholar 

  5. Tomoda, H., Kim, Y. K., Nishida, H., Masuma, R. & Ōmura, S. Pyripyropenes, novel inhibitors of acyl-CoA : cholesterol acyltransferase produced by Aspergillus fumigatus. J. Antibiot. 47, 148–153 (1994).

    Article  CAS  Google Scholar 

  6. Das, A., Davis, M. A., Tomoda, H., Ōmura, S. & Rudel, L. L. Identification of the interaction site within acyl-CoA:cholesterol acyltransferase 2 for the isoform-specific inhibitor pyripyropene A. J. Biol. Chem. 283, 10453–10460 (2008).

    Article  CAS  Google Scholar 

  7. Lee, S. S., Peng, F. C., Chiou, C. M. & Ling, K. H. NMR assignments of territrems A, B, and C and the structure of MB2, the major metabolite of territrem B by rat liver microsomal fraction. J. Nat. Prod. 55, 251–255 (1992).

    Article  Google Scholar 

  8. Kuno, F., Otoguro, K., Shiomi, K., Iwai, Y. & Ōmura, S. Arisugacins A and B, novel and selective acetylcholinesterase inhibitors from Penicillium sp. FO-4259. J. Antibiot. 49, 742–747 (1996).

    Article  CAS  Google Scholar 

  9. Chen, J. W., Luo, Y. L., Hwang, M. J., Peng, F. C. & Ling, K. H. Territrem B, a tremorgenic mycotoxin that inhibits acetylcholinesterase with a noncovalent yet irreversible binding mechanism. J. Biol. Chem. 274, 34916–34923 (1999).

    Article  CAS  Google Scholar 

  10. Ridley, C. P. & Khosla, C. Synthesis and biological activity of novel pyranopyrones derived from engineered aromatic polyketides. ACS Chem. Biol. 2, 104–108 (2007).

    Article  CAS  Google Scholar 

  11. Kuzuyama, T., Noel, J. P. & Richard, S. B. Structural basis for the promiscuous biosynthetic prenylation of aromatic natural products. Nature 435, 983–987 (2005).

    Article  CAS  Google Scholar 

  12. Kawasaki, T. et al. Biosynthesis of a natural polyketide–isoprenoid hybrid compound, furaquinocin A: identification and heterologous expression of the gene cluster. J. Bacteriol. 188, 1236–1244 (2006).

    Article  CAS  Google Scholar 

  13. Haagen, Y. et al. A gene cluster for prenylated naphthoquinone and prenylated phenazine biosynthesis in Streptomyces cinnamonensis DSM 1042. ChemBioChem 7, 2016–2027 (2006).

    Article  CAS  Google Scholar 

  14. Winter, J. M. et al. Molecular basis for chloronium-mediated meroterpene cyclization. J. Biol. Chem. 282, 16362–16368 (2007).

    Article  CAS  Google Scholar 

  15. Tomoda, H. et al. Biosynthesis of pyripyropene A. J. Org. Chem. 61, 882–886 (1996).

    Article  CAS  Google Scholar 

  16. Nierman, W. C. et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).

  17. Fujii, I. et al. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol. Gen. Genet. 253, 1–10 (1996).

    Article  CAS  Google Scholar 

  18. Watanabe, A. et al. Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett. 39, 7733–7736 (1998).

    Article  CAS  Google Scholar 

  19. Watanabe, A. et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett. 40, 91–94 (1999).

    Article  CAS  Google Scholar 

  20. Fujii, I. et al. Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci. Biotechnol. Biochem. 63, 1445–1452 (1999).

    Article  CAS  Google Scholar 

  21. Fujii, I. et al. Enzymatic synthesis of 1,3,6,8-tetrahydroxynaphthalene solely from malonyl coenzyme A by a fungal iterative type I polyketide synthase PKS1. Biochemistry 39, 8853–8858 (2000).

    Article  CAS  Google Scholar 

  22. Watanabe, A. et al. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol. Lett. 192, 39–44 (2000).

    Article  CAS  Google Scholar 

  23. Fujii, I., Watanabe, A., Sankawa, U. & Ebizuka, Y. Identification of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem. Biol. 8, 189–197 (2001).

  24. Fujii, I., Yoshida, N., Shimomaki, S., Oikawa, H. & Ebizuka, Y. An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem. Biol. 12, 1301–1309 (2005).

    Article  CAS  Google Scholar 

  25. Kasahara, K., Fujii, I., Oikawa, H. & Ebizuka, Y. Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. ChemBioChem 7, 920–924 (2006).

    Article  CAS  Google Scholar 

  26. Jeong, T. S. et al. GERI-BP001 compounds, new inhibitors of acyl-CoA : cholesterol acyltransferase from Aspergillus fumigatus F37. J. Antibiot. 48, 751–756 (1995).

    Article  CAS  Google Scholar 

  27. Heide, L. Prenyl transfer to aromatic substrates: genetics and enzymology. Curr. Opin. Chem. Biol. 13, 171–179 (2009).

    Article  CAS  Google Scholar 

  28. Zhao, Y. J., Chng, S. S. & Loh, T. P. Lewis acid-promoted intermolecular acetal-initiated cationic polyene cyclizations. J. Am. Chem. Soc. 129, 492–493 (2007).

    Article  CAS  Google Scholar 

  29. Saikia, S., Parker, E. J., Koulman, A. & Scott, B. Four gene products are required for the fungal synthesis of the indole–diterpene, paspaline. FEBS Lett. 580, 1625–1630 (2006).

    Article  CAS  Google Scholar 

  30. Young, C., McMillan, L., Telfer, E. & Scott, B. Molecular cloning and genetic analysis of an indole–diterpene gene cluster from Penicillium paxilli. Mol. Microbiol. 39, 754–764 (2001).

    Article  CAS  Google Scholar 

  31. Zhang, S., Monahan, B. J., Tkacz, J. S. & Scott, B. Indole–diterpene gene cluster from Aspergillus flavus. Appl. Environ. Microbiol. 70, 6875–6883 (2004).

    Article  CAS  Google Scholar 

  32. Dairi, T. Studies on biosynthetic genes and enzymes of isoprenoids produced by actinomycetes. J. Antibiot. 58, 227–243 (2005).

    Article  CAS  Google Scholar 

  33. Smith, A. B. III, Kinsho, T., Sunazuka, T. & Ōmura, S. Biomimetic total synthesis of the ACAT inhibitor (+)-pyripyropene E. Tetrahedron Lett. 37, 6461–6464 (1996).

    Article  CAS  Google Scholar 

  34. Thoma, R. et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase. Nature 432, 118–122 (2004).

    Article  CAS  Google Scholar 

  35. Erkel, G., Rether, J., Anke, T. & Sterner, O. S14-95, a novel inhibitor of the JAK/STAT pathway from a Penicillium species. J. Antibiot. 56, 337–343 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T.S. Jeong for providing the pyripyropene-producing strain, and K. Gomi and K. Kitamoto for their support in fungal transformation and expression. A part of this work was supported financially by a Grant-in-Aid for Young Scientists (B) (No. 21710222) from the Japan Society for the Promotion of Science (JSPS) and The Mochida Memorial Foundation for Medical and Pharmaceutical Research to T.K., a Grant-in-Aid for Scientific Research (A) (No. 20241049) to Y.E. from JSPS, a Grant-in-Aid for JSPS Fellows to T.I. from JSPS and a Grant-in-Aid for Scientific Research on Priority Areas ‘Applied Genomics’ to I.F. from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Contributions

T.I., Y.E. and T.K. conceived and designed the experiments, T.I., K.T. and Y.M. performed the experiments, T.I., K.T., Y.M., I.A., Y.E. and T.K. analysed the data, I.F. contributed the fungal expression system and T.I., Y.E. and T.K. co-wrote the paper.

Corresponding author

Correspondence to Tetsuo Kushiro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2428 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, T., Tokunaga, K., Matsuda, Y. et al. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nature Chem 2, 858–864 (2010). https://doi.org/10.1038/nchem.764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing