Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization

Abstract

Reversible addition-fragmentation chain-transfer (RAFT) polymerization has revolutionized the field of polymer synthesis as a versatile tool for the production of complex polymeric architectures. As for all chemical processes, research and development in RAFT have to focus on the design and application of chemical products and processes that have a minimum environmental impact, and follow the principles of 'green' chemistry. In this Review, we summarize some of the green features of the RAFT process, and review the recent advances in the production of degradable polymers obtained from RAFT polymerization. Its use to modify biodegradable and renewable inorganic and organic materials to yield more functional products with enhanced applications is also covered. RAFT is a promising candidate for answering both the increasing need of modern society to employ highly functional polymeric materials and the global requirements for developing sustainable chemicals and processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generally accepted mechanism for RAFT polymerization.
Figure 2: Two examples of monomers able to undergo radical ring-opening polymerization.
Figure 3: Synthetic route to polymer-grafted silica particles by Z-supported RAFT polymerization.
Figure 4: Synthesis of silica nanocomposites via grafting through.
Figure 5: Grafting polyacrylamide to silica particles via combination of RAFT polymerization and click chemistry.
Figure 6: Functionalization of TiO2 and formation of polyacrylic acid-TiO2 nanocomposite.
Figure 7: Solid-supported chain-transfer agent.

Similar content being viewed by others

References

  1. Brennecke, J. F. & Allen, D. T. Green chemistry and engineering. Ind. Eng. Chem. Res. 41, 4439 (2002).

    Article  CAS  Google Scholar 

  2. Anastas, P. T. & Warner, J. C. The Twelve Principles of Green Chemistry (Oxford Univ. Press, 1998).

    Google Scholar 

  3. Hawker, C. J., Bosman, A. W. & Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 101, 3661–3688 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Chiefari, J. et al. Living free-radical polymerization by reversible addition fragmentation chain transfer: The RAFT process. Macromolecules 31, 5559–5562 (1998).

    Article  CAS  Google Scholar 

  5. Matyjaszewski, K. & Xia, J. Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. McLeary, J. B. et al. A 1H NMR investigation of reversible addition-fragmentation chain transfer polymerization kinetics and mechanisms. Initialization with different initiating and leaving groups. Macromolecules 38, 3151–3161 (2005).

    Article  CAS  Google Scholar 

  7. Buback, M., Meiser, W. & Vana, P. Mechanism of CPDB-mediated RAFT polymerization of methyl methacrylate: Influence of pressure and RAFT agent concentration. Aust. J. Chem. 62, 1484–1487 (2009).

    Article  CAS  Google Scholar 

  8. Heidenreich, A. J. & Puskas, J. E. Synthesis of arborescent (dendritic) polystyrenes via controlled inimer-type reversible addition-fragmentation chain transfer polymerization. J. Polym. Sci. A 46, 7621–7627 (2008).

    Article  CAS  Google Scholar 

  9. Yu, B. & Lowe, A. B. Synthesis of di- and tri-tertiary amine containing methacrylic monomers and their (co)polymerization via RAFT. J. Polym. Sci. A 47, 1877–1890 (2009).

    Article  CAS  Google Scholar 

  10. Perrier, S., Barner-Kowollik, C., Quinn, J. F., Vana, P. & Davis, T. P. Origin of inhibition effects in the reversible addition fragmentation chain transfer (RAFT) polymerization of methyl acrylate. Macromolecules 35, 8300–8306 (2002).

    Article  CAS  Google Scholar 

  11. Wood, M. R., Duncalf, D. J., Findlay, P., Rannard, S. P. & Perrier, S. Investigation of the experimental factors affecting the trithiocarbonate-mediated RAFT polymerization of methyl acrylate. Aust. J. Chem. 60, 772–778 (2007).

    Article  CAS  Google Scholar 

  12. Cunningham, M. F. Controlled/living radical polymerization in aqueous dispersed systems. Prog. Polym. Sci. 33, 365–398 (2008).

    Article  CAS  Google Scholar 

  13. Lowe, A. B. & McCormick, C. L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media. Prog. Polym. Sci. 32, 283–351 (2007).

    Article  CAS  Google Scholar 

  14. McCormick, C. L., Sumerlin, B. S., Lokitz, B. S. & Stempka, J. E. RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media. Soft Matter 4, 1760–1773 (2008).

    Article  CAS  Google Scholar 

  15. York, A. W., Kirkland, S. E. & McCormick, C. L. Advances in the synthesis of amphiphilic block copolymers via RAFT polymerization: Stimuli-responsive drug and gene delivery. Adv. Drug Delivery Rev. 60, 1018–1036 (2008).

    Article  CAS  Google Scholar 

  16. Thurecht, K. J. et al. Simultaneous enzymatic ring opening polymerization and RAFT-mediated polymerization in supercritical CO2 . Chem. Commun. 4383–4385 (2006).

  17. Gregory, A. M., Thurecht, K. J. & Howdle, S. M. Controlled dispersion polymerization of methyl methacrylate in supercritical carbon dioxide via RAFT. Macromolecules 41, 1215–1222 (2008).

    Article  CAS  Google Scholar 

  18. Hasell, T., Thurecht, K. J., Jones, R. D. W., Brown, P. D. & Howdle, S. M. Novel one pot synthesis of silver nanoparticle-polymer composites by supercritical CO2 polymerization in the presence of a RAFT agent. Chem. Commun. 3933–3935 (2007).

  19. Lee, H. et al. Successful dispersion polymerization in supercritical CO2 using polyvinyl alkylate hydrocarbon surfactants synthesized and anchored via RAFT. J. Am. Chem. Soc. 130, 12242–12243 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Ribaut, T., Lacroix-Desmazes, P., Fournel, B. & Sarrade, S. Synthesis of gradient copolymers with complexing groups by RAFT polymerization and their solubility in supercritical CO2 . J. Polym. Sci. A 47, 5448–5460 (2009).

    Article  CAS  Google Scholar 

  21. Zetterlund, P. B., Aldabbagh, F. & Okubo, M. Controlled/living heterogeneous radical polymerization in supercritical carbon dioxide. J. Polym. Sci. A 47, 3711–3728 (2009).

    Article  CAS  Google Scholar 

  22. Perrier, S., Davis, T. P., Carmichael, A. J. & Haddleton, D. M. First report of reversible addition-fragmentation chain transfer (RAFT) polymerization in room temperature ionic liquids. Chem. Commun. 2226–2227 (2002).

  23. Perrier, S., Davis, T. P., Carmichael, A. J. & Haddleton, D. M. Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexafluorophosphate. Eur. Polym. J. 39, 417–422 (2003).

    Article  CAS  Google Scholar 

  24. Mori, H., Yahagi, M. & Endo, T. RAFT polymerization of N-vinylimidazolium salts and synthesis of thermoresponsive ionic liquid block copolymers. Macromolecules 42, 8082–8092 (2009).

    Article  CAS  Google Scholar 

  25. Johnston-Hall, G., Harjani, J. R., Scammells, P. J. & Monteiro, M. J. RAFT-mediated polymerization of styrene in readily biodegradable ionic liquids. Macromolecules 42, 1604–1609 (2009).

    Article  CAS  Google Scholar 

  26. Puttick, S., Irvine, D. J., Licence, P. & Thurecht, K. J. RAFT-functional ionic liquids: towards understanding controlled free radical polymerization in ionic liquids. J. Mater. Chem. 19, 2679–2682 (2009).

    Article  CAS  Google Scholar 

  27. Quinn, J. F., Davis, T. P. & Rizzardo, E. Ambient temperature reversible addition-fragmentation chain transfer polymerization. Chem. Commun. 1044–1045 (2001).

  28. Convertine, A. J., Ayres, N., Scales, C. W., Lowe, A. B. & McCormick, C. L. Facile, controlled, room-temperature RAFT polymerization of N-isopropylacrylamide. Biomacromolecules 5, 1177–1180 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Convertine, A. J. et al. Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature. Macromol. Rapid Commun. 26, 791–795 (2005).

    Article  CAS  Google Scholar 

  30. Convertine, A. J. et al. Direct synthesis of thermally responsive DMA/NIPAM Diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization. Macromolecules 39, 1724–1730 (2006).

    Article  CAS  Google Scholar 

  31. Bai, W., Zhang, L., Bai, R. & Zhang, G. A very useful redox initiator for aqueous RAFT polymerization of N-isopropylacrylamide and acrylamide at room temperature. Macromol. Rapid Commun. 29, 562–566 (2008).

    Article  CAS  Google Scholar 

  32. Zheng, H., Bai, W., Hu, K., Bai, R. & Pan, C. Facile room temperature RAFT polymerization via redox initiation. J. Polym. Sci. A 46, 2575–2580 (2008).

    Article  CAS  Google Scholar 

  33. Li, G., Zheng, H. & Bai, R. A facile strategy for the preparation of azide polymers via room temperature RAFT polymerization by redox initiation. Macromol. Rapid Commun. 30, 442–447 (2009).

    Article  PubMed  CAS  Google Scholar 

  34. An, Z. et al. Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J. Am. Chem. Soc. 129, 14493–14499 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Assem, Y., Greiner, A. & Agarwal, S. Microwave-assisted controlled ring-closing cyclopolymerization of diallyldimethylammonium chloride via the RAFT process. Macromol. Rapid Commun. 28, 1923–1928 (2007).

    Article  CAS  Google Scholar 

  36. Brown, S. L. et al. Ultra-fast microwave enhanced reversible addition-fragmentation chain transfer (RAFT) polymerization: monomers to polymers in minutes. Chem. Commun. s2145–2147 (2007).

  37. Nguyen, C. T., Nghiem, Q. D., Kim, D.-P., Chang, J. S. & Hwang, Y. K. Microwave assisted synthesis of high molecular weight polyvinylsilazane via RAFT process. Polymer 50, 5037–5041 (2009).

    Article  CAS  Google Scholar 

  38. Paulus, R. M., Becer, C. R., Hoogenboom, R. & Schubert, U. S. High temperature initiator-free RAFT polymerization of methyl methacrylate in a microwave reactor. Aust. J. Chem. 62, 254–259 (2009).

    Article  CAS  Google Scholar 

  39. Roy, D., Ullah, A. & Sumerlin, B. S. Rapid block copolymer synthesis by microwave-assisted RAFT polymerization. Macromolecules 42, 7701–7708 (2009).

    Article  CAS  Google Scholar 

  40. Zhu, J., Zhu, X., Zhang, Z. & Cheng, Z. Reversible addition-fragmentation chain transfer polymerization of styrene under microwave irradiation. J. Polym. Sci. A 44, 6810–6816 (2006).

    Article  CAS  Google Scholar 

  41. He, T., Zou, Y.-F. & Pan, C.-Y. Controlled/“living” radical ring-opening polymerization of 5,6-benzo-2-methylene-1,3-dioxepane based on reversible addition-fragmentation chain transfer mechanism. Polym. J. 34, 138–143 (2002).

    Article  CAS  Google Scholar 

  42. Siegwart, D. J., Bencherif, S. A., Srinivasan, A., Hollinger, J. O. & Matyjaszewski, K. Synthesis, characterization, and in vitro cell culture viability of degradable poly(N-isopropylacrylamide-co-5,6- benzo-2-methylene-1,3-dioxepane)-based polymers and crosslinked gels. J. Biomed. Mater. Res. A 87A, 345–358 (2008).

    Article  CAS  Google Scholar 

  43. Mori, H., Masuda, S. & Endo, T. Ring-opening RAFT polymerization based on aromatization as driving force: Synthesis of well-defined polymers containing anthracene units in the main chain. Macromolecules 39, 5976–5978 (2006); ibid Ring-opening copolymerization of 10-methylene-9,10- dihydroanthryl-9-spirophenylcyclopropane via free radical and RAFT processes. Macromolecules 41, 632–639 (2008).

    Article  CAS  Google Scholar 

  44. Hong, J., Wang, Q. & Fan, Z. Synthesis of multiblock polymer containing narrow polydispersity blocks. Macromol. Rapid Commun. 27, 57–62 (2006).

    Article  CAS  Google Scholar 

  45. Hong, J., Wang, Q., Lin, Y. & Fan, Z. Styrene polymerization in the presence of cyclic trithiocarbonate. Macromolecules 38, 2691–2695 (2005).

    Article  CAS  Google Scholar 

  46. Lei, P., Wang, Q., Hong, J. & Li, Y. Synthesis of poly(n-butyl acrylate) containing multiblocks with a narrow molecular weight distribution using cyclic trithiocarbonates. J. Polym. Sci. A 44, 6600–6606 (2006).

    Article  CAS  Google Scholar 

  47. Zhang, L. et al. Multiblock poly(4-vinylpyridine) and its copolymer prepared with cyclic trithiocarbonate as a reversible addition-fragmentation transfer agent. J. Polym. Sci. A 45, 2617–2623 (2007).

    Article  CAS  Google Scholar 

  48. Paulusse, J. M. J., Amir, R. J., Evans, R. A. & Hawker, C. J. Free radical polymers with tunable and selective bio- and chemical degradability. J. Am. Chem. Soc. 131, 9805–9812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rosselgong, J., Armes, S. P., Barton, W. & Price, D. Synthesis of highly branched methacrylic copolymers: Observation of near-ideal behavior using RAFT polymerization. Macromolecules 42, 5919–5924, (2009).

    Article  CAS  Google Scholar 

  50. Vo, C.-D., Rosselgong, J., Armes, S. P. & Billingham, N. C. RAFT synthesis of branched acrylic copolymers. Macromolecules 40, 7119–7125, (2007).

    Article  CAS  Google Scholar 

  51. Setijadi, E. et al. Biodegradable star polymers functionalized with cyclodextrin inclusion complexes. Biomacromolecules 10, 2699–2707, (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Coulembier, O. et al. Alcohol adducts of N-heterocyclic carbenes: latent catalysts for the thermally-controlled living polymerization of cyclic esters. Macromolecules 39, 5617–5628 (2006).

    Article  CAS  Google Scholar 

  53. Fustin, C.-A. et al. Tuning the hydrophilicity of gold nanoparticles templated in star block copolymers. Langmuir 22, 6690–6695 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Wu, D.-Q. et al. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release. Biomacromolecules 9, 1155–1162 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Shi, P.-J., Li, Y.-G. & Pan, C.-Y. Block and star block copolymers by mechanism transformation X. Synthesis of poly(ethylene oxide) methyl ether/polystyrene/poly(l-lactide) ABC miktoarm star copolymers by combination of RAFT and ROP. Eur. Polym. J. 40, 1283–1290 (2004).

    Article  CAS  Google Scholar 

  56. Mespouille, L., Nederberg, F., Hedrick, J. L. & Dubois, P. Broadening the scope of functional groups accessible in aliphatic polycarbonates by the introduction of RAFT initiating sites. Macromolecules 42, 6319–6321 (2009).

    Article  CAS  Google Scholar 

  57. Le Hellaye, M., Lefay, C., Davis, T. P., Stenzel, M. H. & Barner-Kowollik, C. Simultaneous reversible addition fragmentation chain transfer and ring-opening polymerization. J. Polym. Sci. A 46, 3058–3067 (2008).

    Article  CAS  Google Scholar 

  58. Nebhani, L. et al. Efficient surface modification of divinylbenzene microspheres via a combination of RAFT and hetero Diels-Alder chemistry. Macromol. Rapid Commun. 29, 1431–1437 (2008).

    Article  CAS  Google Scholar 

  59. Xu, X. & Huang, J. Synthesis and characterization of amphiphilic copolymer of linear poly(ethylene oxide) linked with [poly(styrene-co-2-hydroxyethyl methacrylate)-graft-poly(ɛ-caprolactone)] using sequential controlled polymerization. J. Polym. Sci. A 44, 467–476 (2005).

    Article  CAS  Google Scholar 

  60. Luan, B., Zhang, B.-Q. & Pan, C.-Y. Synthesis and characterizations of well-defined branched polymers with AB2 branches by combination of RAFT polymerization and ROP as well as ATRP. J. Polym. Sci. A 44, 549–560 (2005).

    Article  CAS  Google Scholar 

  61. Kakwere, H. & Perrier, S. Facile synthesis of star-shaped copolymers via combination of RAFT and ring opening polymerization. J. Polym. Sci. A 47, 6396–6408 (2009).

    Article  CAS  Google Scholar 

  62. Stanford, M. J. & Dove, A. P. One-pot synthesis of chain end functional, stereoregular, star-shaped poly(lactide). Macromolecules 42, 141–147 (2009).

    Article  CAS  Google Scholar 

  63. Yang, L., Zhou, H., Shi, G., Wang, Y. & Pan, C.-Y. Synthesis of ABCD 4-miktoarm star polymers by combination of RAFT, ROP, and “click chemistry”. J. Polym. Sci. A. 46, 6641–6653 (2008).

    Article  CAS  Google Scholar 

  64. Vora, A., Singh, K. & Webster, D. C. A new approach to 3-miktoarm star polymers using a combination of reversible addition-fragmentation chain transfer (RAFT) and ring opening polymerization (ROP) via “Click” chemistry. Polymer 50, 2768–2774 (2009).

    Article  CAS  Google Scholar 

  65. Li, A. L., Wang, Y., Liang, H. & Lu, J. Controlled radical copolymerization of beta-pinene and acrylonitrile. J. Polym. Sci. A 44, 2376–2387 (2006).

    Article  CAS  Google Scholar 

  66. Wang, Y., Li, A. L., Liang, H. & Lu, J. Reversible addition-fragmentation chain transfer radical copolymerization of beta-pinene and methyl acrylate. Eur. Polym. J. 42, 2695–2702 (2006).

    Article  CAS  Google Scholar 

  67. Li, A. L., Wang, X. Y., Liang, H. & Lu, J. Controlled radical copolymerization of beta-pinene and n-butyl acrylate. React. Funct. Polym. 67, 481–488 (2007).

    Article  CAS  Google Scholar 

  68. Wang, Y., Chen, Q., Liang, H. & Lu, J. Conventional and RAFT radical copolymerizations of beta-pinene with N-substituted maleimides. Polym. Int. 56, 1514–1520 (2007).

    Article  CAS  Google Scholar 

  69. Boyer, C. et al. Bioapplications of RAFT polymerization. Chem. Rev. 109, 5402–5436 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Tsujii, Y., Ejaz, M., Sato, K., Goto, A. & Fukuda, T. Mechanism and kinetics of RAFT-mediated graft polymerization of styrene on a solid surface. 1. experimental evidence of surface radical migration. Macromolecules 34, 8872–8878 (2001).

    Article  CAS  Google Scholar 

  71. Li, C. & Benicewicz, B. C. Synthesis of well-defined polymer brushes grafted onto silica nanoparticles via surface reversible addition-fragmentation chain transfer polymerization. Macromolecules 38, 5929–5936 (2005).

    Article  CAS  Google Scholar 

  72. Li, C., Han, J., Ryu, C. Y. & Benicewicz, B. C. A Versatile method to prepare RAFT agent anchored substrates and the preparation of PMMA grafted nanoparticles. Macromolecules 39, 3175–3183 (2006).

    Article  CAS  Google Scholar 

  73. Perrier, S., Takolpuckdee, P. & Mars, C. A. Reversible addition-fragmentation chain transfer polymerization mediated by a solid supported chain transfer agent. Macromolecules 38, 6770–6774 (2005).

    Article  CAS  Google Scholar 

  74. Zhao, Y. & Perrier, S. Synthesis of well-defined homopolymer and diblock copolymer grafted onto silica particles by Z-supported RAFT polymerization. Macromolecules 39, 8603–8608 (2006).

    Article  CAS  Google Scholar 

  75. Zhao, Y. & Perrier, S. Synthesis of poly(methyl acrylate) grafted onto silica particles by Z-supported RAFT polymerization. Macromol. Symp. 248, 94–103 (2007).

    Article  CAS  Google Scholar 

  76. Zhao, Y. & Perrier, S. Reversible addition-fragmentation chain transfer graft polymerization mediated by fumed silica supported chain transfer agents. Macromolecules 40, 9116–9124 (2007).

    Article  CAS  Google Scholar 

  77. Huang, Y., Liu, Q., Zhou, X., Perrier, S. b. & Zhao, Y. Synthesis of silica particles grafted with well-defined living polymeric chains by combination of RAFT polymerization and coupling reaction. Macromolecules 42, 5509–5517 (2009).

    Article  CAS  Google Scholar 

  78. Nguyen, D. H. & Vana, P. Silica-immobilized cumyl dithiobenzoate as mediating agent in reversible addition fragmentation chain transfer (RAFT) polymerization. Polym. Adv. Technol. 17, 625–633 (2006).

    Article  CAS  Google Scholar 

  79. Perrier, S., Takolpuckdee, P. & Mars, C. A. Reversible addition-fragmentation chain transfer polymerization: end group modification for functionalized polymers and chain transfer agent recovery. Macromolecules 38, 2033–2036 (2005).

    Article  CAS  Google Scholar 

  80. Rotzoll, R. & Vana, P. Synthesis of poly(methyl acrylate) loops grafted onto silica nanoparticles via reversible addition-fragmentation chain transfer polymerization. J. Polym. Sci. A 46, 7656–7666 (2008).

    Article  CAS  Google Scholar 

  81. Rotzoll, R., Nguyen, D. H. & Vana, P. I. Controlled radical polimerization trithiocarbonates containing trimethoxysilyl functionalities as mediating agents in reversible addition-fragmentation chain transfer (RAFT) Polymerization of methyl acrylate. Macromol. Symp. 275–276, 1–12 (2009).

    Article  CAS  Google Scholar 

  82. Rotzoll, R. & Vana, P. A Bipedal silica-immobilized azo-initiator for surface-confined radical polymerizations. Aust. J. Chem. 62, 1473–1478 (2009).

    Article  CAS  Google Scholar 

  83. Lu, C.-H. et al. Surface-imprinted core-shell nanoparticles for sorbent assays. Anal. Chem. 79, 5457–5461 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Hua, D. et al. Controlled grafting modification of silica gel via RAFT polymerization under ultrasonic irradiation. Mater. Chem. Phys. 114, 402–406 (2009).

    Article  CAS  Google Scholar 

  85. Guo, T.-Y., Liu, P., Zhu, J.-W., Song, M.-D. & Zhang, B.-H. Well-defined lactose-containing polymer grafted onto silica particles. Biomacromolecules 7, 1196–1202 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Chinthamanipeta, P. S., Kobukata, S., Nakata, H. & Shipp, D. A. Synthesis of poly(methyl methacrylate)-silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 49, 5636–5642 (2008).

    Article  CAS  Google Scholar 

  87. Wikberg, E., Verhage, J. J., Viklund, C. & Irgum, K. Grafting of silica with sulfobetaine polymers via aqueous reversible addition fragmentation chain transfer polymerization and its use as a stationary phase in HILIC. J. Sep. Sci. 32, 2008–2016 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Titirici, M.-M. & Sellergren, B. Thin molecularly imprinted polymer films via reversible addition-fragmentation chain transfer polymerization. Chem. Mater. 18, 1773–1779 (2006).

    Article  CAS  Google Scholar 

  89. Ranjan, R. & Brittain, W. J. Combination of living radical polymerization and click chemistry for surface modification. Macromolecules 40, 6217–622 (2007).

    Article  CAS  Google Scholar 

  90. Ranjan, R. & Brittain, W. J. Tandem RAFT polymerization and click chemistry: An efficient approach to surface modification. Macromol. Rapid Commun. 28, 2084–2089 (2007).

    Article  CAS  Google Scholar 

  91. Salem, N. & Shipp, D. A. Polymer-layered silicate nanocomposites prepared through in situ reversible addition-fragmentation chain transfer (RAFT) polymerization. Polymer 46, 8573–8581 (2005).

    Article  CAS  Google Scholar 

  92. Samakande, A., Sanderson, R. D. & Hartmann, P. C. Synthesis and Characterization of novel quaternary ammonium RAFT agents. Synth. Commun. 37, 3861–3872 (2007).

    Article  CAS  Google Scholar 

  93. Samakande, A., Sanderson, R. D. & Hartmann, P. C. Encapsulated clay particles in polystyrene by RAFT mediated miniemulsion polymerization. J. Polym. Sci. A 46, 7114–7126 (2008).

    Article  CAS  Google Scholar 

  94. Hojjati, B., Sui, R. & Charpentier, P. A. Synthesis of TiO2/PAA nanocomposite by RAFT polymerization. Polymer 48, 5850–5858 (2007).

    Article  CAS  Google Scholar 

  95. Ngo, V. G., Bressy, C., Leroux, C. & Margaillan, A. Synthesis of hybrid TiO2 nanoparticles with well-defined poly(methyl methacrylate) and poly(tert-butyldimethylsilyl methacrylate) via the RAFT process. Polymer 50, 3095–3102 (2009).

    Article  CAS  Google Scholar 

  96. Lowes, B. J., Bohrer, A. G., Tran, T. & Shipp, D. A. Grafting of polystyrene “from” and “through” surface modified titania nanoparticles. Polym. Bull. 62, 281–289 (2009).

    Article  CAS  Google Scholar 

  97. Takolpuckdee, P., Westwood, J., Lewis, D. M. & Perrier, S. Polymer architectures via reversible addition fragmentation chain transfer (RAFT) polymerization. Macromol. Symp. 216, 23–36 (2004).

    Article  CAS  Google Scholar 

  98. Roy, D., Guthrie, J. T. & Perrier, S. Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38, 10363–10372 (2005).

    Article  CAS  Google Scholar 

  99. Roy, D., Guthrie, J. T. & Perrier, S. RAFT Graft polymerization of 2-(dimethylaminoethyl) methacrylate onto cellulose fibre. Aust. J. Chem. 59, 737–741 (2006).

    Article  CAS  Google Scholar 

  100. Roy, D., Knapp, J. S., Guthrie, J. T. & Perrier, S. Antibacterial cellulose fiber via RAFT surface graft polymerization. Biomacromolecules 9, 91–99 (2007).

    Article  PubMed  CAS  Google Scholar 

  101. Barsbay, M. et al. Verification of controlled grafting of styrene from cellulose via radiation-induced RAFT polymerization. Macromolecules 40, 7140–7147 (2007).

    Article  CAS  Google Scholar 

  102. Barsbay, M., Güven, O., Davis, T. P., Barner-Kowollik, C. & Barner, L. RAFT-mediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer 50, 973–982 (2009).

    Article  CAS  Google Scholar 

  103. Stenzel, M. H., Davis, T. P. & Fane, A. G. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. J. Mater. Chem. 13, 2090–2097 (2003).

    Article  CAS  Google Scholar 

  104. Hernández-Guerrero, M., Davis, T. P., Barner-Kowollik, C. & Stenzel, M. H. Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur. Polym. J. 41, 2264–2277 (2005).

    Article  CAS  Google Scholar 

  105. Fleet, R. et al. RAFT mediated polysaccharide copolymers. Eur. Polym. J. 44, 2899–2911 (2008).

    Article  CAS  Google Scholar 

  106. Hua, D., Tang, J., Cheng, J., Deng, W. & Zhu, X. A novel method of controlled grafting modification of chitosan via RAFT polymerization using chitosan-RAFT agent. Carbohydr. Polym. 73, 98–104 (2008).

    Article  CAS  Google Scholar 

  107. Jiang, J., Hua, D. & Tang, J. One-pot synthesis of pH- and thermo-sensitive chitosan-based nanoparticles by the polymerization of acrylic acid/chitosan with macro-RAFT agent. Int. J. Biol. Macromol. 46, 126–130 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Kuilin, D. et al. A dithiocarbonate group-assisted graft copolymerization of methyl acrylate onto chitosan. Chem. J. Internet 9, 19 (2007).

    Google Scholar 

  109. Bernard, J., Save, M., Arathoon, B. & Charleux, B. Preparation of a xanthate-terminated dextran by click chemistry: Application to the synthesis of polysaccharide-coated nanoparticles via surfactant-free ab initio emulsion polymerization of vinyl acetate. J. Polym. Sci. A 46, 2845–2857 (2008).

    Article  CAS  Google Scholar 

  110. Morimoto, N., Qiu, X.-P., Winnik, F. M. & Akiyoshi, K. Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(N-isopropylacrylamide) chains. Macromolecules 41, 5985–5987 (2008).

    Article  CAS  Google Scholar 

  111. Chen, J., Yi, J., Sun, P., Liu, Z.-T. & Liu, Z.-W. Grafting from ramie fiber with poly(MMA) or poly(MA) via reversible addition-fragmentation chain transfer polymerization. Cellulose 16, 1133–1145 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Perrier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semsarilar, M., Perrier, S. 'Green' reversible addition-fragmentation chain-transfer (RAFT) polymerization. Nature Chem 2, 811–820 (2010). https://doi.org/10.1038/nchem.853

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing