Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pressure-induced bonding and compound formation in xenon–hydrogen solids

Abstract

Closed electron shell systems, such as hydrogen, nitrogen or group 18 elements, can form weakly bound stoichiometric compounds at high pressures. An understanding of the stability of these van der Waals compounds is lacking, as is information on the nature of their interatomic interactions. We describe the formation of a stable compound in the Xe–H2 binary system, revealed by a suite of X-ray diffraction and optical spectroscopy measurements. At 4.8 GPa, a unique hydrogen-rich structure forms that can be viewed as a tripled solid hydrogen lattice modulated by layers of xenon, consisting of xenon dimers. Varying the applied pressure tunes the Xe–Xe distances in the solid over a broad range from that of an expanded xenon lattice to the distances observed in metallic xenon at megabar pressures. Infrared and Raman spectra indicate a weakening of the intramolecular covalent bond as well as persistence of semiconducting behaviour in the compound to at least 255 GPa.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: X-ray single-crystal diffraction of Xe–H2 compound.
Figure 2: Raman and infrared spectra of Xe–H2.
Figure 3: Model structure of Xe(H2)7.
Figure 4: Changes in the electron density of xenon.

Similar content being viewed by others

References

  1. Crabtree, G. W., Dresselhaus, M. S. & Buchanan, M. V. The hydrogen economy. Phys. Today 57, 39–44 (2004).

    Article  CAS  Google Scholar 

  2. Hemley, R. J. Effects of high pressures on molecules. Ann. Rev. Phys. Chem. 51, 763–800 (2000).

    Article  CAS  Google Scholar 

  3. Ashcroft, N. W. Metallic hydrogen: a high-temperature superconductor? Phys. Rev. Lett. 21, 1748–1749 (1968).

    Article  CAS  Google Scholar 

  4. Ashcroft, N. W. Hydrogen dominant metallic alloys: high temperature superconductors? Phys. Rev. Lett. 92, 187002 (2004).

    Article  CAS  Google Scholar 

  5. Carlsson, A. E. & Ashcroft, N. W. Approaches for reducing the insulator–metal transition pressure in hydrogen. Phys. Rev. Lett. 50, 1305–1308 (1983).

    Article  CAS  Google Scholar 

  6. Goettel, K. A., Eggert, J. H. & Silvera, I. F. Optical evidence for the metallization of xenon at 132(5) GPa. Phys. Rev. Lett. 62, 665–668 (1989).

    Article  CAS  Google Scholar 

  7. Reichlin, R. et al. Evidence for the insulator–metal transition in xenon from optical, X-ray and band-structure studies to 170 GPa. Phys. Rev. Lett. 62, 669–672 (1989).

    Article  CAS  Google Scholar 

  8. Eremets, M. I., Gregoryanz, E. A., Struzhkin, V. V., Mao, H. K. & Hemley, R. J. Electrical conductivity of xenon at megabar pressures. Phys. Rev. Lett. 85, 2797–2800 (2000).

    Article  CAS  Google Scholar 

  9. Khriachtchev, L., Lignell, A., Juselius, J., Rasanen, M. & Savchenko, E. Infrared absorption spectrum of matrix-isolated noble-gas hydride molecules: fingerprints of specific interactions and hindered rotation. J. Chem. Phys. 122, 14510–14517 (2005).

    Article  Google Scholar 

  10. Khriachtchev, L., Pettersson, M., Runeberg, N., Lundell, J. & Rasanen, M. A stable argon compound. Nature 406, 874–876 (2000).

    Article  CAS  Google Scholar 

  11. Grochala, W. Atypical compounds of gases, which have been called ‘noble’. Chem. Soc. Rev. 36, 1632–1655 (2007).

    Article  CAS  Google Scholar 

  12. Wlodarczyk, A., McMillan, P. F. & Greenfield, S. A. High pressure effects in anaesthesia and narcosis. Chem. Soc. Rev. 35, 890–898 (2006).

    Article  CAS  Google Scholar 

  13. Vos, W. L. et al. A high-pressure van der Waals compound in solid nitrogen–helium mixtures. Nature 358, 46–48 (1992).

    Article  CAS  Google Scholar 

  14. Loubeyre, P., Jean-Louis, M., LeToullec, R. & Charon-Gérard, L. High pressure measurements of the He–Ne binary phase diagram at 296 K: evidence for the stability of a stoichiometric Ne(He)2 solid. Phys. Rev. Lett. 70, 178–181 (1993).

    Article  CAS  Google Scholar 

  15. Hanni, H., Lantto, P., Runeberg, N., Jokisaari, J. & Vaara, J. Calculation of binary magnetic properties and potential energy curve in xenon dimer: second virial coefficient of 129Xe nuclear shielding. J. Chem. Phys. 121, 5908–5919 (2004).

    Article  CAS  Google Scholar 

  16. Asaumi, K. High-pressure X-ray diffraction study of solid xenon and its equation of state in relation to metallization transition. Phys. Rev. B 29, 7026–7029 (1984).

    Article  CAS  Google Scholar 

  17. Sears, D. R. & Harold, P. K. Density and expansivity of solid xenon. J. Chem. Phys. 37, 3002–3006 (1962).

    Article  CAS  Google Scholar 

  18. Mao, H. K. & Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 66, 671–692 (1994).

    Article  CAS  Google Scholar 

  19. Goncharov, A. F., Eggert, J. H., Mazin, I. I., Hemley, R. J. & Mao, H. K. Raman excitations and orientational ordering in deuterium at high pressure. Phys. Rev. B 54, R15590–R15593 (1996).

    Article  CAS  Google Scholar 

  20. Loubeyre, P. et al. X-ray diffraction and equation of state of hydrogen at megabar pressures. Nature 383, 702–704 (1996).

    Article  CAS  Google Scholar 

  21. LeBail, A. ESPOIR: a program for solving structures by Monte Carlo analysis of powder data. Mater. Sci. Forum 378–381, 65–70 (2001).

    Article  Google Scholar 

  22. Brandenburg, K. & Putz, H. Crystal Impact GbR, ENDEAVOR 1.6 <http://www.crystalimpact.com/endeavor> (2008).

  23. Proserpio, D. M., Hoffman, R. & Janda, K. C. The xenon–chlorine conundrum: van der Waals complex or linear molecule. J. Am. Chem. Soc. 113, 7184–7189 (1991).

    Article  CAS  Google Scholar 

  24. Amarouche, M., Durand, G. & Malrieu, J. P. Structure and stability of Xen+ clusters. J. Chem. Phys. 88, 1010–1018 (1988).

    Article  CAS  Google Scholar 

  25. Drews, T. & Seppelt, K. The Xe2+ ion—preparation and structure. Angew. Chem. Int. Ed. 36, 273–274 (1997).

    Article  CAS  Google Scholar 

  26. Berry-Pusey, B. N., Anger, B. C., Laicher, G. & Saam, B. Nuclear spin relaxation of 129Xe due to persistent xenon dimers. Phys. Rev. A 74, 63408–63417 (2006).

    Article  Google Scholar 

  27. Hanfland, M., Hemley, R. J., Mao, H. K. & Williams, G. P. Synchrotron infrared spectroscopy at megabar pressures: vibrational dynamics of hydrogen to 180 GPa. Phys. Rev. Lett. 69, 1129–1132 (1992).

    Article  CAS  Google Scholar 

  28. Loubeyre, P., LeToullec, R. & Pinceaux, J. P. Raman measurements of the vibrational properties of H2 as a guest molecule in dense helium, neon, argon, and deuterium systems up to 40 GPa. Phys. Rev. B 45, 12844–12853 (1992).

    Article  CAS  Google Scholar 

  29. Hemley, R. J., Mao, H.-K., Goncharov, A. F., Hanfland, M. & Struzhkin, V. Synchrotron infrared spectroscopy to 0.15 eV of H2 and D2 at megabar pressures. Phys. Rev. Lett. 76, 1667–1670 (1996).

    Article  CAS  Google Scholar 

  30. Sheldrick, G. A short history of SHELX. Acta Cryst. Sec. A 64, 112–122 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. V. Struzhkin, G. Shen, Y. Meng and S. Sinogeikin for assistance and discussions. This work was supported by DOE-BES (DE-FG02-06ER46280), DOE-NNSA (CDAC), NSF-DMR (DMR-0805056), NSF-EAR (COMPRES) and the Balzan Foundation. A.P.S. is supported by DOE-BES under contract DE-AC02-06CH11357 and N.S.L.S. is supported by DOE-BES under contract no. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Contributions

M.S. and R.J.H. designed the project. M.S., A.F.G. and S.A.G. conducted the sample loading, spectroscopic studies and analysis. M.S., P.D., P.L., W.Y. and H.K.M. conducted the synchrotron X-ray diffraction measurements and analysis. Z.L. performed the synchrotron IR measurements. M.S., P.D., R.J.H., A.F.G. and S.A.G. wrote the manuscript.

Corresponding author

Correspondence to Maddury Somayazulu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 987 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somayazulu, M., Dera, P., Goncharov, A. et al. Pressure-induced bonding and compound formation in xenon–hydrogen solids. Nature Chem 2, 50–53 (2010). https://doi.org/10.1038/nchem.445

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.445

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing