Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells

Abstract

In the search for new biological imaging agents, metal coordination compounds able to emit from triplet metal-to-ligand charge transfer (MLCT) states offer many advantages as luminescent probes of DNA structure. However, poor cellular uptake restricts their use in live cells. Here, we present a dinuclear ruthenium(II) polypyridyl system that works as a multifunctional biological imaging agent staining the DNA of eukaryotic and prokaryotic cells for both luminescence and transition electron microscopy. This MLCT ‘light switch’ complex directly images nuclear DNA of living cells without requiring prior membrane permeabilization. Furthermore, inhibition and transmission electron microscopy studies show this to be via a non-endocytotic, but temperature-dependent, mechanism of cellular uptake in MCF-7 cells, and confocal microscopy reveals multiple emission peaks that function as markers for cellular DNA structure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The cellular uptake properties of dinuclear Ru(II) tpphz complexes.
Figure 2: Mechanism of cellular uptake of Ru(II) tpphz complex.
Figure 3: Cellular localization of Ru(II) tpphz complex characterized by transition electron microscopy.
Figure 4: A DNA-specific luminescent cellular imaging agent.
Figure 5: Multiple-emission profile as a luminescent probe of DNA structure.

Similar content being viewed by others

References

  1. Tsien, R. Y., Ernst, L. & Waggoner, A. in Handbook of Biological Confocal Microscopy 3rd edn (ed. J. B. Pawley) 338–352 (Springer, 2006).

    Book  Google Scholar 

  2. Martin, R. M., Leonhardt, H. & Cardoso, M. C. DNA labeling in living cells. Cytometry Part A 67, 45–52 (2005).

    Article  Google Scholar 

  3. Pfeifer, G. P., You, Y.-H. & Besaratinia, A. Mutations induced by ultraviolet light. Mutat. Res. 571, 19–31 (2005).

    Article  CAS  Google Scholar 

  4. Pandya, S., Yu, J. & Parker, D. Engineering emissive europium and terbium complexes for molecular imaging and sensing. Dalton Trans. 2757–2766 (2006).

  5. Botchway, S. W. et al. Time-resolved and two-photon emission imaging microscopy of live cells with inert platinum complexes. Proc. Natl Acad. Sci. USA 105, 16071–16076 (2008).

    Article  CAS  Google Scholar 

  6. Friedman, A. E., Chambron, J. C., Sauvage, J. P., Turro, N. J. & Barton, J. K. A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J. Am. Chem. Soc. 112, 4960–4962 (1990).

    Article  CAS  Google Scholar 

  7. Zeglis, B. M., Pierre, V. C. & Barton, J. K. Metallo-intercalators and metallo-insertors. Chem. Commun. 4565–4579 (2007).

  8. Metcalfe, C. & Thomas, J. A. Kinetically inert transition metal complexes that reversibly bind to DNA. Chem. Soc. Rev. 32, 215–224 (2003).

    Article  CAS  Google Scholar 

  9. Jiménez-Hernández, M. E., Orellana, G., Montero, F. & Portolés, M. T. A ruthenium probe for cell viability measurement using flow cytometry, confocal microscopy and time-resolved luminescence. Photochem. Photobiol. 72, 28–34 (2000).

    Article  Google Scholar 

  10. Onfelt, B., Gostring, L., Lincoln, P., Norden, B. & Onfelt, A. Cell studies of the bisintercalator [u-C4(cpdppz)2-(phen)4Ru2]4+ : toxic effects and properties as a light emitting DNA probe in V79 Chinese hampster cells. Mutagenesis 17, 317–320 (2002).

    Article  CAS  Google Scholar 

  11. Amoroso, A. J. et al. Rhenium fac tricarbonyl bisimine complexes: biologically useful fluorochromes for cell imaging applications. Chem. Commun. 3066–3068 (2007).

  12. Puckett, C. A. & Barton, J. K. Methods to explore cellular uptake of ruthenium complexes. J. Am. Chem. Soc. 129, 46–47 (2007).

    Article  CAS  Google Scholar 

  13. Puckett, C. A. & Barton, J. K. Mechanism of cellular uptake of a ruthenium polypyridyl complex. Biochemistry 47, 11711–11716 (2008).

    Article  CAS  Google Scholar 

  14. Lo, K. K. W., Lee, T. K. M., Lau, J. S. Y., Poon, W. L. & Cheng, S. H. Luminescent biological probes derived from ruthenium(II) estradiol polypyridine complexes. Inorg. Chem. 47, 200–208 (2008).

    Article  CAS  Google Scholar 

  15. Neugebauer, U. et al. Ruthenium polypyridyl peptide conjugates: membrane permeable probes for cellular imaging. Chem. Commun. 5307–5309 (2008).

  16. Bolger, J., Gourdon, A., Ishow, E. & Launay, J.-P. Mononuclear and binuclear tetrapyrido [3.2-a: 2′, 3′-c: 3″, 2″-h: 2″′, 3″′-j] phenazine (tpphz) ruthenium and osmium complexes. Inorg. Chem. 35, 2937–2944 (1996).

    Article  CAS  Google Scholar 

  17. Rajput, C., Rutkaite, R., Swanson, L., Haq, I. & Thomas, J. A. Dinuclear monointercalating Ru(II) complexes that display high affinity binding to duplex and quadruplex DNA. Chem. Eur. J. 12, 4611–4619 (2006).

    Article  CAS  Google Scholar 

  18. Lutterman, D. A. et al. Intercalation is not required for DNA light-switch behavior. J. Am. Chem. Soc. 130, 1163–1170 (2008).

    Article  CAS  Google Scholar 

  19. Campagna, S., Serroni, S., Bodige, S. & MacDonnell, F. M. Absorption spectra, photophysical properties, and redox behavior of stereochemically pure dendritic ruthenium(II) tetramers and related dinuclear and mononuclear complexes. Inorg. Chem. 38, 692–701 (1999).

    Article  CAS  Google Scholar 

  20. Mailaender, C. et al. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 150, 853–864 (2004).

    Article  CAS  Google Scholar 

  21. Ziegler, H. K. & Unanue, E. R. Decrease in macrophage antigen catabolism caused by ammonia and chloroquine is associated with inhibition of antigen presentation to T cells. Proc. Natl Acad. Sci. USA 79, 175–178 (1982).

    Article  CAS  Google Scholar 

  22. Wang, L. H., Rothberg, K. G. & Anderson, R. G. Mis-assembly of clathrin lattices on endosomes reveals a regulatory switch for coated pit formation. J. Cell Biol. 123, 1107–1117 (1993).

    Article  CAS  Google Scholar 

  23. Schnitzer, J. E., Oh, P., Pinney, E. & Allard, J. Filipin-sensitive caveolae-mediated transport in endothelium: reduced transcytosis, scavenger endocytosis, and capillary permeability of select macromolecules. J. Cell Biol. 127, 1217–1232 (1994).

    Article  CAS  Google Scholar 

  24. Elkjaer, M. L., Birn, H., Agre, P., Christensen, E. I. & Nielsen, S. Effects of microtubule disruption on endocytosis, membrane recycling and polarized distribution of Aquaporin-1 and gp330 in proximal tubule cells. Eur. J. Cell Biol. 67, 57–72 (1995).

    CAS  PubMed  Google Scholar 

  25. Musatkina, E., Amouri, H., Lamoureux, M., Chepurnykh, T. & Cordier, C. Mono- and dicarboxylic polypyridyl-Ru complexes as potential cell DNA dyes and transfection agents. J. Inorg. Biochem. 101, 1086–1089 (2007).

    Article  CAS  Google Scholar 

  26. Brunner, J. & Barton, J. K. Targeting DNA Mismatches with rhodium intercalators functionalized with a cell-penetrating peptide. Biochemistry 45, 12295–12302 (2006).

    Article  CAS  Google Scholar 

  27. Hurley, L. H. DNA and its associated processes as targets for cancer therapy. Nat. Rev. Cancer 2, 188–200 (2002).

    Article  CAS  Google Scholar 

  28. Douglas, M. P. & Rogers, S. O. DNA damage caused by common cytological fixatives. Mutat. Res. 401, 77–88 (1998).

    Article  CAS  Google Scholar 

  29. Canela, A., Vera, E., Klatt, P. & Blasco, M. A. High-throughput telomere length quantification by FISH and its application to human population studies. Proc. Natl Acad. Sci. USA 104, 5300–5305 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks C. Hill for TEM assistance and E. Smythe for helpful discussions. This work was supported by the EPSRC (UK) and the White Rose LSI-DTC.

Author information

Authors and Affiliations

Authors

Contributions

M.R.G., G.B. and J.A.T. conceived and designed the experiments, M.R.G. and J.G.-L. performed the experiments, all the authors analysed the data, G.B., S.F., C.S. and J.A.T. contributed materials and analysis tools, M.R.G., G.B. and J.A.T. co-wrote the paper.

Corresponding authors

Correspondence to Giuseppe Battaglia or Jim A. Thomas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gill, M., Garcia-Lara, J., Foster, S. et al. A ruthenium(II) polypyridyl complex for direct imaging of DNA structure in living cells. Nature Chem 1, 662–667 (2009). https://doi.org/10.1038/nchem.406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing