Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Functional end groups for polymers prepared using ring-opening metathesis polymerization

Abstract

The precise placement of functional groups on the chain-ends of macromolecules is a major focus of polymer research. Most common living polymerization techniques offer specific methods of end-functionalization governed by the active propagating species and the kinetics of the polymerization reaction. Ring-opening metathesis polymerization has established itself as one of the most functional-group-tolerant living polymerization techniques known, but this tolerance has limited the number of available functionalization reactions. Metathesis chemists have therefore been required to develop a variety of end-functionalizations, adapting each of them to the reactivity scheme of the particular catalysts used and the complexity of the group to be attached. This review presents an overview of the methods developed for different types and generations of metathesis catalysts that are typically used in such polymerizations. We also present a 'field guide' of functionalization methods highlighting the factors to be considered when choosing the most appropriate approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Examples of commercially available metathesis catalysts based on molybdenum and ruthenium.
Figure 2: General approaches for the functionalization of ROMP polymers during the three stages of a polymerization (initiation, polymerization and termination).
Figure 3: Examples of the synthesis of pre-functionalized initiators.
Figure 4: Addition of functionalized carbonyls to metathesis catalysts based on titanium (red side) or molybdenum and tungsten (blue side).
Figure 5: Termination strategies for ruthenium-catalysed ROMP.
Figure 6: Mechanism for the formation of telechelic polymers by application of chain-transfer agents (CTAs).
Figure 7: Synthetic concept of sacrificial synthesis.

Similar content being viewed by others

References

  1. Grubbs, R. H. Handbook of Metathesis (Wiley-VCH, 2003).

    Book  Google Scholar 

  2. Hérisson, J.-L. & Chauvin, Y. Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques. Makromol. Chem. 141, 161–176 (1971).

    Article  Google Scholar 

  3. Eleuterio, H. C. Polymerization of cyclic olefins. US Patent 3074918 (1963).

  4. Calderon, N., Ofstead, E. A., Ward, J. P., Judy, W. A. & Scott, K. W. Olefin metathesis. I. Acyclic vinylenic hydrocarbons. J. Am. Chem. Soc. 90, 4133–4140 (1968).

    Article  CAS  Google Scholar 

  5. Murdzek, J. S. & Schrock, R. R. Low polydispersity homopolymers and block copolymers by ring opening of 5,6-dicarbomethoxynorbornene. Macromolecules 20, 2640–2642 (1987).

    Article  CAS  Google Scholar 

  6. Toreki, R. & Schrock, R. R. A well-defined rhenium(VII) olefin metathesis catalyst. J. Am. Chem. Soc. 112, 2448 (1990).

    Article  CAS  Google Scholar 

  7. Wallace, K. C., Liu, A. H., Dewan, J. C. & Schrock, R. R. Preparation and reactions of tantalum alkylidene complexes containing bulky phenoxide or thiolate ligands. Controlling ring-opening metathesis polymerization activity and mechanism through choice of anionic ligand. J. Am. Chem. Soc. 110, 4964–4977 (1988).

    Article  CAS  Google Scholar 

  8. Schrock, R. R. Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3748–3759 (2006).

    Article  CAS  Google Scholar 

  9. Grubbs, R. H. Olefin-metathesis catalysts for the preparation of molecules and materials (Nobel Lecture). Angew. Chem. Int. Ed. 45, 3760–3765 (2006).

    Article  CAS  Google Scholar 

  10. Grubbs, R. H. The development of functional group tolerant ROMP catalysts. J. Macromol. Sci. A 31, 1829–1933 (1994).

    Article  Google Scholar 

  11. Binder, J. B. & Raines, R. T. Olefin metathesis for chemical biology. Curr. Opin. Chem. Biol. 12, 767–773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ulman, M. & Grubbs, R. H. Relative reaction rates of olefin substrates with ruthenium(II) carbene metathesis initiators. Organometallics 17, 2484–2489 (1998).

    Article  CAS  Google Scholar 

  13. Maynard, H. D., Okada, S. Y. & Grubbs, R. H. Inhibition of cell adhesion to fibronectin by oligopeptide-substituted polynorbornenes. J. Am. Chem. Soc. 123, 1275–1279 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Pasut, G. & Veronese, F. M. Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci. 32, 933–961 (2007).

    Article  CAS  Google Scholar 

  15. Nie, Z. & Kumacheva, E. Patterning surfaces with functional polymers. Nature Mater. 7, 277–290 (2008).

    Article  CAS  Google Scholar 

  16. Goethals, E. J. Telechelic polymers by cationic ring-opening polymerization. Makromol. Chem. Makromol. Symp. 6, 53–66 (1986).

    Article  CAS  Google Scholar 

  17. Goethals, E. J., Van Caeter, P., Du Prez, F. E. & Dubreuil, M. F. Sophisticated macromolecular structures by cationic ring-opening polymerizations. Macromol. Symp. 98, 185–92 (1995).

    Article  CAS  Google Scholar 

  18. Gilliom, L. R. & Grubbs, R. H. Titanacyclobutanes derived from strained, cyclic olefins: the living polymerization of norbornene. J. Am. Chem. Soc. 108, 733–742 (1986).

    Article  CAS  Google Scholar 

  19. Tebbe, F. N., Parshall, G. W. & Reddy, G. S. Olefin homologation with titanium methylene compounds. J. Am. Chem. Soc. 100, 3611–3613 (1978).

    Article  CAS  Google Scholar 

  20. Amass, A. J. & Gregory, D. Anionic to metathesis-transformation polymerization. Br. Polym. J. 19, 263–268 (1987).

    Article  CAS  Google Scholar 

  21. Amass, A. J., Bas, S., Gregory, Denis, M. & Mathew C. Block copolymers by metathesis polymerization. Makromol. Chem. 186, 325–330 (1985).

    Article  CAS  Google Scholar 

  22. Schwab, P., Grubbs, R. H. & Ziller, J. W. Synthesis and applications of RuCl2(=CHR')(PR3)2: The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc., 118, 100–110 (1996).

    Article  CAS  Google Scholar 

  23. Bielawski, C. W., Louie, J. & Grubbs, R. H. Tandem catalysis: Three mechanistically distinct reactions from a single ruthenium complex. J. Am. Chem. Soc., 122, 12872–12873 (2000).

    Article  CAS  Google Scholar 

  24. Burtscher, D., Saf, R. & Slugovc, C. Fluorescence-labeled olefin metathesis polymerization initiators. J. Polym. Sci. A 44, 6136–6145 (2006).

    Article  CAS  Google Scholar 

  25. Castle, T. C., Hutchings, L. R. & Khosravi, E. Synthesis of block copolymers by changing living anionic polymerization into living ring opening metathesis polymerization. Macromolecules 37, 2035–2040 (2004).

    Article  CAS  Google Scholar 

  26. Pine, S. H., Zahler, R., Evans, D. A. & Grubbs, R. H. Titanium-mediated methylene-transfer reactions. Direct conversion of esters into vinyl ethers. J. Am. Chem. Soc. 102, 3270–3272 (1980).

    Article  CAS  Google Scholar 

  27. Brown-Wensley, K. A. et al. Cp2TiCH2 complexes in synthetic applications. Pure Appl. Chem. 55, 1733–1744 (1983).

    Article  CAS  Google Scholar 

  28. Gilliom, L. R. & Grubbs, R. H. Titanacyclobutanes derived from strained, cyclic olefins: the living polymerization of norbornene. J. Am. Chem. Soc. 108, 733–742 (1986).

    Article  CAS  Google Scholar 

  29. Cannizo, L. F. & Grubbs, R. H. End capping of polynorbornene produced by titanacyclobutanes. Macromolecules 20, 1488–1490 (1987).

    Article  Google Scholar 

  30. Risse, W. & Grubbs, R. H. Block and graft copolymers by living ring-opening olefin metathesis polymerization. J. Mol. Catal. 65, 211–217 (1991).

    Article  CAS  Google Scholar 

  31. Risse, W. & Grubbs, R. H. Application of Wittig-type reactions of titanacyclobutane end groups for the formation of block and graft copolymers. Macromolecules 22, 4462–4466 (1989).

    Article  CAS  Google Scholar 

  32. Schrock, R. R. Living ring-opening metathesis polymerization catalyzed by well-characterized transition-metal alkylidene complexes. Acc. Chem. Res. 23, 158–165 (1990).

    Article  CAS  Google Scholar 

  33. Schrock, R. R., Feldman, J., Cannizzo, L. F. & Grubbs, R. H. Ring-opening polymerization of norbornene by a living tungsten alkylidene complex. Macromolecules 20, 1169–1172 (1987).

    Article  CAS  Google Scholar 

  34. Murdzek, J. S. & Schrock, R. R. Low polydispersity homopolymers and block copolymers by ring opening of 5,6-dicarbomethoxynorbornene. Macromolecules 20, 2640–2642 (1987).

    Article  CAS  Google Scholar 

  35. Schrock, R. R. et al. Synthesis of molybdenum imido alkylidene complexes and some reactions involving acyclic olefins. J. Am. Chem. Soc. 112, 3875–3886 (1990).

    Article  CAS  Google Scholar 

  36. Bazan, G. C. et al. Living ring-opening metathesis polymerization of 2,3-difunctionalized norbornadienes by Mo(:CHBu-tert)(:NC6H3Pr-iso2-2,6)(OBu-tert)2. J. Am. Chem. Soc. 112, 8378–8387 (1990).

    Article  CAS  Google Scholar 

  37. Albagli, D., Bazan, G. C., Schrock, R. R. & Wrighton, M. S. New functional polymers prepared by ring-opening metathesis polymerization: study of the quenching of luminescence of pyrene end groups by ferrocene or phenothiazine centers in the polymers. J. Phys. Chem. 97, 10211–10216 (1993).

    Article  CAS  Google Scholar 

  38. Albagli, D., Bazan, G. C., Schrock, R. R. & Wrighton, M. S. Surface attachment of well-defined redox-active polymers and block polymers via terminal functional groups. J. Am. Chem. Soc. 115, 7328–7334 (1993).

    Article  CAS  Google Scholar 

  39. Mitchell, J. O., Gibson, V. C. & Schrock, R. R. Chain-end functionalization of living polymers formed by the ring-opening metathesis polymerization of norbornene. Macromolecules 24, 1220–1221 (1991).

    Article  CAS  Google Scholar 

  40. Fox, H. H., Lee, J.-K., Park, L. Y. & Schrock, R. R. Synthesis of five- and six-coordinate alkylidene complexes of the type Mo(CHR)(Nar)[OCMe(CF3)2]2Sx and their use as living ROMP initiators or Wittig reagents. Organometallics 12, 759–768 (1993).

    Article  CAS  Google Scholar 

  41. Singh, R., Verploegen, E., Hammond, P. T. & Schrock, R. R. Synthesis of ABA triblock copolymers via ring-opening metathesis polymerization using a bimetallic initiator: Influence of a flexible spacer in the side chain liquid crystalline block. Macromolecules 39, 8241–8249 (2006).

    Article  CAS  Google Scholar 

  42. Murphy, J. J. & Nomura, K. Precise synthesis of poly(macromonomer)s containing sugars by repetitive ring-opening metathesis polymerization. Chem Commun. 4080–4082 (2005).

  43. Murphy, J. J., Takahashi, S. & Nomura, K. Synthesis of poly(macromonomer)s by repeating ring-opening metathesis polymerization (ROMP) with Mo(CHCMePh)(NAr)(OR) initiators. Macromolecules 34, 4712–4723 (2001).

    Article  CAS  Google Scholar 

  44. Murphy, J. J., Kawasaki, T., Fujiki, M. & Nomura, K. Precise synthesis of amphiphilic polymeric architectures by grafting poly(ethylene glycol) to end-functionalized block ROMP copolymers. Macromolecules 38, 1075–1083 (2005).

    Article  CAS  Google Scholar 

  45. Murphy, J. J., Furusho, H., Paton, R. M. & Nomura, K. Precise synthesis of poly(macromonomer)s containing sugars by repetitive ROMP and their attachments to poly(ethylene glycol): synthesis, TEM analysis and their properties as amphiphilic block fragments. Chem. Eur. J. 13, 8985–8997 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Dounis, P. & Feast, W. J. A route to low polydispersity linear and star polyethylenes via ring-opening metathesis polymerization. Polymer 37, 2547 (1996).

    Article  CAS  Google Scholar 

  47. Albagli, D., Bazan, G. C., Schrock, R. R. & Wrighton, M. S. Surface attachment of well-defined redox-active polymers and block polymers via terminal functional groups. J. Am. Chem. Soc 115, 7328–7334 (1993).

    Article  CAS  Google Scholar 

  48. Coca, S., Paik, H.-J. & Matyjaszewski, K. Block copolymers by transformation of living ring-openeing metathesis polymerization into controlled/“living” atom transfer radical polymerization. Macromolecules 30, 6573–6576 (1997).

    Google Scholar 

  49. Myers, S. B. & Register, R. A. Block copolymers synthesized by ROMP-to-anionic polymerization transformation. Macromolecules 41, 5283 (2008).

  50. Notestein, J. M., Lee, L.-B. W. & Register, R. A. Well-defined diblock copolymers via termination of living ROMP with anionically polymerized macromolecular aldehydes. Macromolecules 35, 1985–1987 (2002).

    Article  CAS  Google Scholar 

  51. Slugovc, C., Demel, S. & Stelzer, F. Ring opening metathesis polymerization in donor solvents. Chem. Commun. 2572–2573 (2002).

  52. Feast, W. J., Gibson, V. C., Khosravi, E., Marshall, E. L. & Mitchell, J. P. Bimolecular termination in living ring opening metathesis polymerization. Polymer 33, 872–873 (1992).

    Article  CAS  Google Scholar 

  53. Biagini, S. C. G., Davies, R. G., Gibson, V. C., Giles, M. R., Marshall, E. L. & North, M. Ruthenium initiated ring opening metathesis polymerization of amino-acid and –ester functionalised norbornenes and a highly selective chain-end functionalisation reaction using molecular oxygen. Polymer 42, 6669–6671 (2001).

    Article  CAS  Google Scholar 

  54. Wu, Z., Nguyen, S. T., Grubbs, R. H. & Zillier, J. W. Reactions of ruthenium carbenes of the type (PPh3)2(X)2Ru:CH-CH:CPh2 (X = Cl and CF3COO) with strained acyclic olefins and functionalized olefins. J. Am. Chem. Soc. 117, 5503–5511 (1995).

    Article  CAS  Google Scholar 

  55. Schwab, P., Grubbs, R. H. & Zillier, J. W. Synthesis and applications of RuCl(CHR')(PR): The influence of the alkylidene moiety on metathesis activity. J. Am. Chem. Soc. 118, 100–110 (1996).

    Article  CAS  Google Scholar 

  56. Earnshaw, C., Wallis, C. J. & Warren, S. Synthesis of E- and Z- vinyl ethers by the Horner- Wittig reaction. J. Chem. Soc. Perkin Trans. 1, 12, 3099–106 (1979).

    Article  Google Scholar 

  57. Gordon, E. J., Gestwicki, J. E., Strong, L. E. & Kiessling, L. L. Synthesis of end-labeled multivalent ligands for exploring call-surface-receptor-ligand interactions. Chem. Biol. 7, 9–16 (2000).

    Article  CAS  PubMed  Google Scholar 

  58. Gestwicki, J. E., Cairo, C. W., Mann, D. A., Owen, R. M. & Kiessling, L. L. Selective immobilization of multivalent ligands for surface plasmon resonance and fluorescence microscopy. Anal. Biochem. 305, 149–155 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Pontrello, J. K., Allen, M. J., Underbakke, E. S. & Kiessling, L. L. Solid-phase synthesis of polymers using the ring-opening metathesis polymerization. J. Am. Chem. Soc. 127, 14536–14537 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, B., Metera, K. & Sleiman, H. F. Biotin-terminated ruthenium bipyridine ring-opening metathesis polymerization copolymers: Synthesis and self-assembly with streptavidin. Macromolecules 38, 1084–1090 (2005).

    Article  CAS  Google Scholar 

  61. Owen, R. M., Gestwicki, J. E., Young, T. & Kiessling, L. L. Synthesis and applications of end-labeled neoglycopolymers. Org. Lett. 4, 2293–2296 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Mangold, S. L., Carpenter, R. T. & Kiessling, L. L. Synthesis of fluorogenic polymers for visualizing cellular internalization. Org. Lett. 10, 2997–3000 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Katayama, H., Yonezawa, F., Nagao, M. & Ozawa, F. Ring-opening metathesis polymerization of norbornene using vinylic ethers as chain-transfer agents: Highly selective synthesis of monofunctional macroinitiators for atom transfer radical polymerization. Macromolecules 35, 1133–1136 (2002).

    Article  CAS  Google Scholar 

  64. Katayama, H., Urushima, H. & Ozawa, F. Olefin metathesis reactions using vinylideneruthenium(II) complexes as catalyst precursors. J. Organomet. Chem. 606, 16–25 (2000).

    Article  CAS  Google Scholar 

  65. Katayama, H., Urushima, H., Nishioka, T., Wada, C., Nagao, M. & Ozawa, F. Highly selective ring-opening/cross-metathesis reactions of norbornene derivatives using selenocarbene complexes as catalysts. Angew. Chem. Int. Ed. 39, 4513–4515 (2000).

    Article  CAS  Google Scholar 

  66. Caskey, S. R., Stewart, M. H., Kivela, J. E., Sootsman, J. R., Johnson, M. J. A. & Kampf, J. W. Two generalizable routes to terminal carbide complexes. J. Am. Chem. Soc. 127, 16750–16751 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Caskey, S. R., Stewart, M. H., Johnson, M. J. A. & Kampf, J. W. Carbon-carbon bond formation at a neutral terminal carbide ligand: Generation of cyclopropenylidene and vinylidene complexes. Angew. Chem. Int. Ed. 45, 7422–7424 (2006).

    Article  CAS  Google Scholar 

  68. Macnaughtan, M. L., Johnson, M. J. A. & Kampf, J. W. Olefin metathesis reactions with vinyl halides: Formation, observation, and fate of the ruthenium-monohalomethylidene moiety. J. Am. Chem. Soc. 129, 7708–7709 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Hilf, S., Grubbs, R. H. & Kilbinger, A. F. M. End capping ring-opening olefin metathesis polymerization polymers with vinyl lactones. J. Am. Chem. Soc. 130, 11040–11048 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Lexer, C., Saf, R. & Slugovc, C. Acrylates as termination reagent for the preparation of semi-telechelic polymers made by ring opening metathesis polymerization. J. Polym. Sci. A 47, 299–305 (2009).

    Article  CAS  Google Scholar 

  71. Li, M. -H., Keller, P. & Albouy, P.-A. Novel liquid crystalline block copolymers by ATRP and ROMP. Macromolecules 36, 2284–2292 (2003).

    Article  CAS  Google Scholar 

  72. Matson, J. B. & Grubbs, R. H. ROMP–ATRP block copolymers prepared from monotelechelic poly(oxa)norbornenes using a difunctional terminating agent. Macromolecules 41, 5626–5631 (2008).

    Article  CAS  Google Scholar 

  73. Gozgen, A., Dag, A., Durmaz, H., Sirkecioglu, O., Hizal, G. & Tunca, U. ROMP-NMP-ATRP combination for the preaparation of 3-miktoarm star terpolymer via click chemistry. J. Polym. Sci. A1 47, 497–504 (2009).

    Article  CAS  Google Scholar 

  74. Schrock, R. R. et al. Evaluation of cyclopentene-based chain-transfer agents for living ring-opening metathesis polymerization. Macromolecules 22, 3191–3200 (1989).

    Article  CAS  Google Scholar 

  75. Crowe, W. E., Mitchell, J. P., Gibson, V. C. & Schrock, R. R. Chain-transfer agents for living ROMP [ring opening metathesis polymerization] reactions of norbornene. Macromolecules 23, 3534–3536 (1990).

    Article  CAS  Google Scholar 

  76. Benedicto, A. D., Claverie, J. P. & Grubbs, R. H. Molecular weight distribution of living polymerization involving chain-transfer agents: Computational results, analytical solutions, and experimental investigations using ring-opening metathesis polymerization. Macromolecules 28, 500–511 (1995).

    Article  CAS  Google Scholar 

  77. Bielawski, C. W., Benitez, D., Morita, T. & Grubbs, R. H. Synthesis of end-functionalized poly(norbornene)s via ring-opening metathesis polymerization. Macromolecules 34, 8610–8618 (2001).

    Article  CAS  Google Scholar 

  78. Hillmyer, M. A., Nguyen, S. & Grubbs, R. H. Utility of a ruthenium metathesis catalyst for the preparation of end-functionalized polybutadiene. Macromolecules 30, 718–721 (1997).

    Article  CAS  Google Scholar 

  79. Morita, T., Maughon, B. R., Bielawski, C. W. & Grubbs, R. H. A ring-opening metathesis polymerization (ROMP) approach to carboxyl- and amino-terminated telechelic poly(butadiene)s. Macromolecules 33, 6621–6623 (2000).

    Article  CAS  Google Scholar 

  80. Ji, S., Hoye, T. T. & Macosko, C. W. Controlled synthesis of high molecular weight telechelic polybutadienes by ring-opening metathesis polymerization Macromolecules 37, 5458–5489 (2004).

    Article  CAS  Google Scholar 

  81. Maughon, B. R., Morita, T., Bielawski, C. W. & Grubbs, R. H. Synthesis of cross-linkable telechelic poly(butenylene)s derived from ring-opening metathesis polymerization. Macromolecules 33, 1929–1935 (2000).

    Article  CAS  Google Scholar 

  82. Scherman, O. A., Rutenberg, I. M. & Grubbs, R. H. Direct synthesis of soluble, end-functionalized polyenes and polyacetylene block copolymers. J. Am. Chem. Soc. 125, 8515–8522 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Xia, Y., Verduzco, R., Grubbs, R. H. & Kornfield, J. A. Well-defined liquid crystal gels from telechelic polymers. J. Am. Chem. Soc. 130, 1735–1740 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Matson, J. B., Virgil, S. C. & Grubbs, R. H. Pulsed-addition ring-opening metathesis polymerization: catalyst-economical syntheses of homopolymers and block copolymers. J. Am. Chem. Soc. 131, 3355–3362 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Fraser, C., Hillmyer, M. A., Gutierrez, E. & Grubbs, R. H. Degradable cyclooctadiene/acetal copolymers: Versatile precursors to 1,4-hydroxytelechelic polybutadiene and hydroxytelechelic polyethylene. Macromolecules 28, 7256–7261 (1995).

    Article  CAS  Google Scholar 

  86. Hilf, S., Berger- Nicoletti, E., Grubbs, R. H. & Kilbinger, A. F. M. Mono-functional metathesis polymers via sacrificial diblock copolymers. Angew. Chem. Int. Ed. 45, 8045–8048 (2006).

    Article  CAS  Google Scholar 

  87. Perrier, S. & Wang, X. Sacrificial synthesis. Nature 445, 271 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Hilf, S. & Kilbinger, A. F. M. An all-ROMP route to graft copolymers. Macromol. Rapid Commun. 28, 1225–1230 (2007).

    Article  CAS  Google Scholar 

  89. Hilf, S., Hanik, N. & Kilbinger, A. F. M. A “click” approach to ROMP block copolymers. J. Polym. Sci. A 46, 2913–2921 (2008).

    Article  CAS  Google Scholar 

  90. Hilf, S., Grubbs, R. H. & Kilbinger, A. F.M Sacrificial synthesis of hydroxy-functionalized ROMP polymers: An efficiency study. Macromolecules 41, 6006–6011 (2008).

    Article  CAS  Google Scholar 

  91. Hilf, S. & Kilbinger, A. F. M. Thiol functionalized ROMP polymers via sacrificial synthesis. Macromolecules 42, 4127–4133 (2009).

    Article  CAS  Google Scholar 

  92. Hilf, S. & Kilbinger, A. F. M. Sacrificial synthesis of hydroxy-telechelic metathesis polymers via multiblock copolymers. Macromolecules 42, 1099–1106 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.H. thanks the POLYMAT Graduate School of Excellence and the IRTG International Research Training Group (University of Mainz) for funding. A.F.M.K. thanks the Deutsche Forschungsgemeinschaft (DFG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas F. M. Kilbinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hilf, S., Kilbinger, A. Functional end groups for polymers prepared using ring-opening metathesis polymerization. Nature Chem 1, 537–546 (2009). https://doi.org/10.1038/nchem.347

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing