Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Anion-tuning of supramolecular gel properties

Abstract

The study of supramolecular gels has developed into a well-recognised field of materials science, pertaining to the general area of soft matter. The use of small molecules that aggregate through supramolecular interactions (such as hydrogen bonds, ππ interactions, coordination bonds and van der Waals interactions) has given materials scientists an alternative to polymeric compounds for the development of practical gels. There have been further attempts to functionalize, activate or control the physical properties of such gels by means of the reversibility of the interactions between the component molecules. Tuning of these characteristics has been accomplished by using mechanical, thermal, electrochemical, electromagnetic and chemical stimuli. The use of anions as a chemical stimulus has been a recent development and is the subject of this Perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The acetone gel of 1, showing the transitions between the gel and liquid states on addition of chemical stimuli (X = F, Cl or BF4).
Figure 2: Schematic representation of the reversible polymerization and the reversible conversion between folded and unfolded conformations of a coordination chain on counteranion exchange of 5, resulting in state changes from gel to sol and vice versa.
Figure 3: Gels of 6 (11 wt % in acetonitrile) exhibit multi-responsive behaviour, including the chemo-response to formic acid and TBA+ ClO4.
Figure 4: Diagram showing the luminescence profiles of Au(I) pyrazolate complex 8 in hexane as solutions and gels, and the schematics of the self-assembling structures.

Similar content being viewed by others

References

  1. Hirst, A. R., Escuder, B., Miravet, J. F. & Smith, D. K. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices. Angew. Chem. Int. Ed. 47, 8002–8018 (2008).

    Article  CAS  Google Scholar 

  2. Terech, P. & Weiss, R. G. Low molecular mass gelators of organic liquids and the properties of their gels. Chem. Rev. 97, 3133–3160 (1997).

    Article  CAS  Google Scholar 

  3. Fages, F. (ed.) Low molecular mass gelators: Design, self-assembly, function. Top. Curr. Chem. 256 (special issue), 1–273 (Springer, 2005).

    Google Scholar 

  4. Ishi-i, T. & Shinkai, S. Dye-based organogels: stimuli-responsive soft materials based on one-dimensional self-assembling aromatic dyes. Top. Curr. Chem. 258, 119–160 (2005).

    Article  CAS  Google Scholar 

  5. Estroff, L. A. & Hamilton, A. D. Water gelation by small organic molecules. Chem. Rev. 104, 1201–1218 (2004).

    Article  CAS  Google Scholar 

  6. van Esch, J. H. & Feringa, B. L. New functional materials based on self-assembling organogels: from serendipity towards design. Angew. Chem. Int. Ed. 39, 2263–2266 (2000).

    Article  CAS  Google Scholar 

  7. Sangeetha, N. M. & Maitra, U. Supramolecular gels: functions and uses. Chem. Soc. Rev. 34, 821–836 (2005).

    Article  CAS  Google Scholar 

  8. Weiss, R. G. & Terech, P. (eds) Molecular Gels: Materials with Self-Assembled Fibrillar Networks (Kluwer Academic, 2005).

    Google Scholar 

  9. Naota, T. & Koori, H. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. J. Am. Chem. Soc. 127, 9324–9325 (2005).

    Article  CAS  Google Scholar 

  10. Anderson, K. M. et al. Structure calculation of an elastic hydrogel from sonication of rigid small molecule components. Angew. Chem. Int. Ed. 47, 1058–1062 (2008).

    Article  CAS  Google Scholar 

  11. Chung, J. W., An, B.-K. & Park, S. Y. A thermoreversible and proton-induced gel-sol phase transition with remarkable fluorescence variation. Chem. Mater. 20, 6750–6755 (2008).

    Article  CAS  Google Scholar 

  12. Sugiyasu, K., Fujita, N., Takeuchi, M., Yamada, S. & Shinkai, S. Proton-sensitive fluorescent organogels. Org. Biomol. Chem. 1, 895–899 (2003).

    Article  CAS  Google Scholar 

  13. Sako, Y. & Takaguchi, Y. A photo-responsive hydrogelator having gluconamides at its peripheral branches. Org. Biomol. Chem. 6, 3843–3847 (2008).

    Article  CAS  Google Scholar 

  14. Ghoussoub, A. & Lehn, J.-M. Dynamic sol-gel interconversion by reversible cation binding and release in G-quartet-based supramolecular polymers. Chem. Commun. 5763–5765 (2005).

  15. Zhang, Y., Gu, H., Yang, Z. & Xu, B. Supramolecular hydrogels respond to ligand-receptor interaction. J. Am. Chem. Soc. 125, 13680–13681 (2003).

    Article  CAS  Google Scholar 

  16. Bhuniya, S. & Kim, B. H. An insulin-sensing sugar-based fluorescent hydrogel. Chem. Commun. 1842–1844 (2006).

  17. Sreenivasachary, N. & Lehn, J.-M. Gelation-driven component selection in the generation of constitutional dynamic hydrogels based on guanine-quartet formation. Proc. Natl Acad. Sci. USA 102, 5938–5943 (2005).

    Article  CAS  Google Scholar 

  18. Fages, F. Metal coordination to assist molecular gelation. Angew. Chem. Int. Ed. 45, 1680–1682 (2006).

    Article  CAS  Google Scholar 

  19. Maeda, H. Anion-responsive supramolecular gels. Chem. Eur. J. 14, 11274–11282 (2008).

    Article  CAS  Google Scholar 

  20. Sessler, J. L., Gale, P. A. & Cho, W.-S. Anion Receptor Chemistry (Royal Society of Chemistry, Cambridge, 2006).

    Google Scholar 

  21. Yamanaka, M., Nakamura, T., Nakagawa, T. & Itagaki, H. Reversible sol-gel transition of a tris-urea gelator that responds to chemical stimuli. Tetrahedron Lett. 48, 8990–8993 (2007).

    Article  CAS  Google Scholar 

  22. Stanley, C. E. et al. Anion binding inhibition of the formation of a helical organogel. Chem. Commun. 3199–3201 (2006).

  23. Maeda, H., Haketa, Y. & Nakanishi, T. Aryl-substituted C3-bridged oligopyrroles as anion receptors for formation of supramolecular organogels. J. Am. Chem. Soc. 129, 13661–13674 (2007).

    Article  CAS  Google Scholar 

  24. Wang, C., Zhang, D. & Zhu, D. A chiral low-molecular-weight gelator based on binaphthalene with two urea moieties: modulation of the CD spectrum after gel formation. Langmuir 23, 1478–1482 (2007).

    Article  Google Scholar 

  25. Maeda, H. Supramolecular chemistry of acyclic oligopyrroles. Eur. J. Org. Chem. 5313–5325 (2007).

    Article  Google Scholar 

  26. Webb, J. E. A., Crossley, M. J., Turner, P. & Thordarson, P. Pyromellitamide aggregates and their response to anion stimuli. J. Am. Chem. Soc. 129, 7155–7162 (2007).

    Article  CAS  Google Scholar 

  27. Kim, T. H. et al. Gelation-induced fluorescence enhancement of benzoxazole-based organogel and its naked-eye fluoride detection. Chem. Commun. 2364–2366 (2008).

  28. Džolić, Z., Cametti, M., Cort, A. D., Mandolini, L. & Žinić, M. Fluoride-responsive organogelator based on oxalamide-derived anthraquinone. Chem. Commun. 3535–3537 (2007).

  29. Yang, H. et al. Switchable fluorescent organogels and mesomorphic superstructure based on naphthalene derivatives. Langmuir 23, 8224–8230 (2007).

    Article  CAS  Google Scholar 

  30. Varghese, R., George, S. J. & Ajayaghosh A. Anion induced modulation of self-assembly and optical properties in urea end-capped oligo(p-phenylenevinylene)s. Chem. Commun. 593–595 (2005).

  31. Wang, S., Shen, W., Feng Y. & Tian, H. A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem. Commun. 1497–1499 (2006).

  32. Piepenbrock, M.-O. M., Lloyd, G. O., Clarke, N. & Steed, J. W., Gelation is crucially dependent on functional group orientation and may be tuned by anion binding. Chem. Commun. 2644–2646 (2008).

  33. Zhang, J., Xu, X. & James, S. L. Solution state coordination polymers featuring wormlike macroscopic structures and cage-polymer interconversions. Chem. Commun. 4218–4220 (2006).

  34. Becker, T. et al. Proline-functionalised calix[4]arene: an anion-triggered hydrogelator. Chem. Commun. 3900–3902 (2008).

  35. Yang, Z. et al. Enzymatic formation of supramolecular hydrogels. Adv. Mater. 16, 1440–1444 (2004).

    Article  CAS  Google Scholar 

  36. Yang, Z., Gu, H., Zhang, Y., Wang, L. & Xu, B. Small molecule hydrogels based on a class of antiinflammatory agents. Chem. Commun. 208–209 (2004).

  37. Curr. Opin. Colloid Interface Sci. 9 (special issues on Hofmeister effects), 1–197 (2004).

  38. Kim, H.-J., Zin, W.-C. & Lee, M. Anion-directed self-assembly of coordination polymer into tunable secondary structures. J. Am. Chem. Soc. 126, 7009–7014 (2004).

    Article  CAS  Google Scholar 

  39. Kim, H.-J., Lee, J.-H. & Lee, M. Stimuli-responsive gels from reversible coordination polymers. Angew. Chem. Int. Ed. 44, 5810–5814 (2005).

    Article  CAS  Google Scholar 

  40. Leontidis, E. Hofmeister anion effects on surfactant self-assembly and the formation of mesoporous solids. Curr. Opin. Colloid Interface Sci. 7, 81–91 (2002).

    Article  CAS  Google Scholar 

  41. Weng, W., Beck, J. B., Jamieson, A. M. & Rowan, S. J. Understanding the mechanism of gelation and stimuli-responsive nature of a class of metallo-supramolecular gels. J. Am. Chem. Soc. 128, 11663–11672 (2006).

    Article  CAS  Google Scholar 

  42. Liu, Q., Wang, Y., Li, W. & Wu, L. Structural characterization and chemical response of a Ag-coordinated supramolecular gel. Langmuir 23, 8217–8223 (2007).

    Article  CAS  Google Scholar 

  43. Kishimura, A., Yamashita, T. & Aida, T. Phosphorescent organogels via “metallophilic” interactions for reversible RGB-color switching. J. Am. Chem. Soc. 127, 179–183 (2005).

    Article  CAS  Google Scholar 

  44. Henstock, H. An investigation into the causes of gel formation by some organic salts in methanol solution. J. Am. Chem. Soc. 61, 670–673 (1939).

    Article  CAS  Google Scholar 

  45. Abdallah, D. J. & Weiss, R. G. The influence of the cationic center, anion, and chain length of tetra-n-alkylammonium and –phosphonium salt gelators on the properties of their thermally reversible organogels. Chem. Mater. 12, 406–413 (2000).

    Article  CAS  Google Scholar 

  46. Trivedi, D. R. & Dastidar, P. Cation-induced supramolecular isomerism in the hydrogen-bonded network of secondary ammonium monocarboxylate salts: a new class of organo gelator and their structures. Cryst. Growth Des. 6, 2114–2121 (2006).

    Article  CAS  Google Scholar 

  47. Ballabh, A., Trivedi, D. R. & Dastidar, P. New series of organogelators derived from a combinatorial library of primary ammonium monocarboxylate salts. Chem. Mater. 18, 3795–3800 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Commonwealth Scholarships Commission and the EPSRC for funding of our work in the fascinating world of supramolecular gels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan W. Steed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloyd, G., Steed, J. Anion-tuning of supramolecular gel properties. Nature Chem 1, 437–442 (2009). https://doi.org/10.1038/nchem.283

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.283

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing