Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A potential energy surface bifurcation in terpene biosynthesis

Abstract

Terpenes comprise a class of natural products that includes molecules with thousands of distinct structurally and stereochemically complex molecular architectures. The core hydrocarbon frameworks of these molecules are constructed via carbocation rearrangements promoted by terpene synthase (cyclase) enzymes. Although many mechanistic details for such reactions have been uncovered, the factors that control which carbocation intermediates and transition-state structures form are not well understood. Here we show that rearrangement pathways that pass through particular transition-state structures can bifurcate after the transition state. The resulting pathways lead to terpenes with distinctly different skeletons from each other. Although these types of bifurcating pathways have been described previously for some small molecules, the possibility that they may have an important role in the production of complex molecules in nature has, to our knowledge, not previously been considered.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The putative intramolecular proton-transfer step in the reaction of copalyl diphosphate, catalysed by abietadiene synthase, to give abietadiene.
Figure 2: Computed energies for structures involved in the rearrangement of 1a and 1b.
Figure 3: Dyotropic rearrangement that interconverts 4b and 3b/c.
Figure 4: Computed reaction pathways through TSre (1b–3b/4b) and TS (3b–4b).

Similar content being viewed by others

References

  1. Christianson, D. W. Structural biology and chemistry of terpenoid cyclases. Chem. Rev. 106, 3412–3442 (2006).

    Article  CAS  Google Scholar 

  2. Davis, E. M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes, and diterpenes. Top. Curr. Chem. 209, 53–95 (2000).

    Article  CAS  Google Scholar 

  3. Cane, D. E. Enzymatic formation of sesquiterpenes. Chem. Rev. 90, 1089–1103 (1990).

    Article  CAS  Google Scholar 

  4. Christianson, D. W. Unearthing the roots of the terpenome. Curr. Opin. Chem. Biol. 12, 141–150 (2008).

    Article  CAS  Google Scholar 

  5. Hong, Y. J. & Tantillo, D. J. Consequences of conformational preorganization in sesquiterpene biosynthesis: theoretical studies on the formation of the bisabolene, curcumene, acoradiene, zizaene, cedrene, duprezianene, and sesquithuriferol sesquiterpenes. J. Am. Chem. Soc. 131, 7999–8015 (2009).

    Article  CAS  Google Scholar 

  6. Wang, S. C. & Tantillo, D. J. Prediction of a new pathway to presilphiperfolanol. Org. Lett. 10, 4827–4830 (2008).

    Article  CAS  Google Scholar 

  7. Lodewyk, M. W., Gutta, P. & Tantillo, D. J. Computational studies on biosynthetic carbocation rearrangements leading to sativene, cyclosativene, α-ylangene, and β-ylangene. J. Org. Chem. 73, 6570–6579 (2008).

    Article  CAS  Google Scholar 

  8. Tantillo, D. J. Recent excursions to the lands between concerted and stepwise: from natural products biosynthesis to reaction design. J. Phys. Org. Chem. 21, 561–570 (2008).

    Article  CAS  Google Scholar 

  9. Gutta, P. & Tantillo, D. J. A promiscuous proton in taxadiene biosynthesis? Org. Lett. 9, 1069–1071 (2007).

    Article  CAS  Google Scholar 

  10. Hong, Y. J. & Tantillo, D. J. Which is more likely in trichodiene biosynthesis: hydride or proton transfer? Org. Lett. 8, 4601–4604 (2006).

    Article  CAS  Google Scholar 

  11. Gutta, P. & Tantillo, D. J. Theoretical studies of farnesyl cation cyclization: pathways to pentalenene. J. Am. Chem. Soc. 128, 6172–6179 (2006).

    Article  CAS  Google Scholar 

  12. Bojin, M. D. & Tantillo, D. J. Nonclassical carbocations as C–H hydrogen bond donors. J. Phys. Chem. A 110, 4810–4816 (2006).

    Article  CAS  Google Scholar 

  13. Thomas, J. B., Waas, J. R., Harmata, M. & Singleton, D. A. Control elements in dynamically determined selectivity on a bifurcating surface. J. Am. Chem. Soc. 130, 14544–14555 (2008).

    Article  CAS  Google Scholar 

  14. Ess, D. H. et al. Bifurcations on potential energy surfaces of organic reactions. Angew. Chem. Int. Ed. 47, 7592–7601 (2008).

    Article  CAS  Google Scholar 

  15. Ravn, M. M., Peters, R. J., Coates, R. M. & Croteau, R. Mechanism of abietadiene synthase catalysis: stereochemistry and stabilization of the cryptic pimarenyl carbocation intermediates. J. Am. Chem. Soc. 124, 6998–7006 (2002).

    Article  CAS  Google Scholar 

  16. Ravn, M. M., Coates, R. M., Jetter, R. & Croteau, R. B. Stereospecific intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to (–)-abietadiene catalyzed by recombinant cyclase from grand fir (Abies grandis). Chem. Commun. 21–22 (1998).

  17. Ravn, M. M., Coates, R. M., Flory, J. E., Peters, R. J. & Croteau, R. Stereochemistry of the cyclization rearrangement of (+)-copalyl diphosphate to (–)-abietadiene catalyzed by recombinant abietadiene synthase from Abies grandis. Org. Lett. 2, 573–576 (2000).

    Article  CAS  Google Scholar 

  18. Wilderman, P. R. & Peters, R. J. A single residue switch converts abietadiene synthase into a pimaradiene specific cyclase. J. Am. Chem. Soc. 129, 15736–15737 (2007).

    Article  CAS  Google Scholar 

  19. Fukui, K. The path of chemical reactions – the IRC approach. Acc. Chem. Res. 14, 363–368 (1981).

    Article  CAS  Google Scholar 

  20. Gonzalez, C. & Schlegel, H. B. Reaction path following in mass-weighted internal coordinates. J. Phys. Chem. 94, 5523–5527 (1990).

    Article  CAS  Google Scholar 

  21. Nouri, D. H. & Tantillo, D. J. Hiscotropic rearrangements: hybrids of electrocyclic and sigmatropic reactions. J. Org. Chem. 71, 3686–3695 (2006).

    Article  CAS  Google Scholar 

  22. Williams, C. D. et al. Intramolecular proton transfer in the cyclization of geranylgeranyl diphosphate to the taxadiene precursor of taxol catalyzed by recombinant taxadiene synthase. Chem. Biol. 7, 969–977 (2000).

    Article  CAS  Google Scholar 

  23. Chow, S. Y., Williams, H. J., Huang, Q., Nanda, S. & Scott, A. I. Studies on taxadiene synthase: interception of the cyclization cascade at the isocembrene stage with GGPP analogs. J. Org. Chem. 70, 9997–10003 (2005).

    Article  CAS  Google Scholar 

  24. Allemann, R. K., Young, N. J., Ma, S., Truhlar, D. G. & Gao, J. Synthetic efficiency in enzyme mechanisms involving carbocations: aristolochene synthase. J. Am. Chem. Soc. 129, 13008–13013 (2007).

    Article  CAS  Google Scholar 

  25. Miller, D. J. et al. Stereochemistry of eudesmane cation formation during catalysis by aristolochene synthase from Penicillium roqueforti. Org. Biomol. Chem. 6, 2346–2354 (2008).

    Article  CAS  Google Scholar 

  26. Cane, D. E., Prabhakaran, P. C., Oliver, J. S. & McIlwaine, D. B. Aristolochene biosynthesis. Stereochemistry of the deprotonation steps in the enzymatic cyclization of farnesyl pyrophosphate. J. Am. Chem. Soc. 112, 3209–3210 (1990).

    Article  CAS  Google Scholar 

  27. Surendra, K. & Corey, E. J. Rapid and enantioselective synthetic approaches to germanicol and other pentacyclic triterpenes. J. Am. Chem. Soc. 130, 8865–8869 (2008).

    Article  CAS  Google Scholar 

  28. Reetz, M. T. Dyotropic rearrangements, a new class of orbital-symmetry controlled reactions. Type I. Angew. Chem. Int. Ed. Engl. 11, 129–130 (1972).

    Article  CAS  Google Scholar 

  29. Reetz, M. T. Dyotropic rearrangements, a new class of orbital-symmetry controlled reactions. Type II. Angew. Chem. Int. Ed. Engl. 11, 130–131 (1972).

    Article  CAS  Google Scholar 

  30. Reetz, M. T. Primary and secondary orbital effects in dyotropic rearrangements. Tetrahedron 29, 2189–2194 (1973).

    Article  CAS  Google Scholar 

  31. Reetz, M. T. Dyotropic rearrangements and related σ–σ exchange processes. Adv. Organomet. Chem. 16, 33–65 (1977).

    Article  CAS  Google Scholar 

  32. Hoffmann, R. & Williams, J. E. Jr The stabilization of bridged structures of ethanes. Helv. Chim. Acta 55, 67–75 (1972).

    Article  CAS  Google Scholar 

  33. Streitwieser, A., Jayasree, E. G., Hasanayn, F. & Leung, S.-H. A theoretical study of SN2′ reactions of allylic halides: role of ion pairs. J. Org. Chem. 73, 9426–9434 (2008).

    Article  CAS  Google Scholar 

  34. Carpenter, B. K. Intramolecular dynamics for the organic chemist. Acc. Chem. Res. 25, 520–528 (1992).

    Article  CAS  Google Scholar 

  35. Carpenter, B. K. Nonexponential decay of reactive intermediates: new challenges for spectroscopic observation, kinetic modeling and mechanistic interpretation. J. Phys. Org. Chem. 16, 858–868 (2003).

    Article  CAS  Google Scholar 

  36. Frisch, M. J. et al. Gaussian03, revision D.01 (Gaussian, Pittsburgh, Pennsylvania, 2003).

    Google Scholar 

  37. Becke, A. D. Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  38. Becke, A. D. A new mixing of Hartree–Fock and local density–function theories. J. Chem. Phys. 98, 1372–1377 (1993).

    Article  CAS  Google Scholar 

  39. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation–energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  40. Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 98, 11623–11627 (1994).

    Article  CAS  Google Scholar 

  41. Matsuda, S. P. T., Wilson, W. K. & Xiong, Q. Mechanistic insights into triterpene synthesis from quantum mechanical calculations. Detection of systematic errors in B3LYP cyclization energies. Org. Biomol. Chem. 4, 530–543 (2006).

    Article  CAS  Google Scholar 

  42. Zhao, Y. & Truhlar, D. G. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J. Phys. Chem. A 108, 6908–6918 (2004).

    Article  CAS  Google Scholar 

  43. Zheng, J., Zhao, Y. & Truhlar, D. G. Representative benchmark suites for barrier heights of diverse reaction types and assessment of electronic structure methods for thermochemical kinetics. J. Chem. Theory Comput. 3, 569–582 (2007).

    Article  CAS  Google Scholar 

  44. Müller, N., Falk, A. & Gsaller, G. Ball & Stick V.4.0a12, Molecular Graphics Application for MacOS Computers (Johannes Kepler University, Linz, 2004).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the University of California, Davis, and the National Science Foundation's CAREER and Partnership for Advanced Computational Infrastructure programmes for their support. We are also grateful to M. W. Lodewyk, M. R. Siebert and S. C. Wang (University of California, Davis) for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

D.J.T. and Y.J.H. conceived and designed the experiments, analysed the data and co-wrote the paper. Y.J.H. performed the experiments.

Corresponding author

Correspondence to Dean J. Tantillo.

Supplementary information

Supplementary information

Supplementary information (PDF 2549 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, Y., Tantillo, D. A potential energy surface bifurcation in terpene biosynthesis. Nature Chem 1, 384–389 (2009). https://doi.org/10.1038/nchem.287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing