Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Specific fluorogenic probes for ozone in biological and atmospheric samples

An Erratum to this article was published on 01 May 2010

This article has been updated

Abstract

Ozone exposure is a growing global health problem, especially in urban areas. While ozone in the stratosphere protects the earth from harmful ultraviolet light, tropospheric or ground-level ozone is toxic and can damage the respiratory tract. It has recently been shown that ozone may be produced endogenously in inflammation and antibacterial responses of the immune system; however, these results have sparked controversy owing to the use of a non-specific colorimetric probe. Here we report the synthesis of fluorescent molecular probes able to unambiguously detect ozone in both biological and atmospheric samples. Unlike other ozone-detection methods, in which interference from different reactive oxygen species is often a problem, these probes are ozone specific. Such probes will prove useful for the study of ozone in environmental science and biology, and so possibly provide some insight into the role of ozone in cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indigo carmine (1) is a non-selective, colorimetric probe for ROS.
Figure 2: Synthesis and mechanistic design of ozone probe 4.
Figure 3: Ozone detection in aqueous and biological media.
Figure 4: Live-cell imaging of human bronchial epithelial cells in the presence of ozone using compound 8.
Figure 5: Conversion of 4 into 7 enables the detection of ozone in air samples.

Similar content being viewed by others

Change history

  • 10 March 2010

    In the version of this Article originally published, some of the images for the different parts in Fig. 4 were incorrectly placed. The correction has been made in the HTML and PDF versions of the Article. A Supplementary film was also missing online, this has now been uploaded.

References

  1. Smith, L. L. Oxygen, oxysterols, ouabain, and ozone: a cautionary tale. Free Radical Biol. Med. 37, 318–324 (2004).

    Article  CAS  Google Scholar 

  2. Wentworth, Jr, P. et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 298, 2195–2199 (2002).

    Article  CAS  Google Scholar 

  3. Babior, B. M., Takeuchi, C., Ruedi, J. M., Gutierrez, A. & Wentworth, Jr, P. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc. Natl Acad. Sci. USA 100, 3031–3034 (2003).

    Article  CAS  Google Scholar 

  4. Wentworth, Jr, P. et al. Evidence for ozone formation in human atherosclerotic arteries. Science 302, 1053–1056 (2003).

    Article  CAS  Google Scholar 

  5. Takeuchi, K. & Ibusuki, T. Quantitative determination of aqueous-phase ozone by chemiluminescence using indigo-5,5′-disulfonate. Anal. Chem. 61, 619–623 (1989).

    Article  CAS  Google Scholar 

  6. Kettle, A. J., Clark, B. M. & Winterbourn, C. C. Superoxide converts indigo carmine to isatin sulfonic acid. J. Biol. Chem. 279, 18521–18525 (2004).

    Article  CAS  Google Scholar 

  7. Sies, H. Ozone in arteriosclerotic plaques: searching for the ‘smoking gun’. Angew. Chem. Int. Ed. 43, 3514–3515 (2004).

    Article  CAS  Google Scholar 

  8. Kettle, A. J. & Winterbourn, C. C. Do neutrophils produce ozone? BioFactors 24, 41–45 (2005).

    Article  CAS  Google Scholar 

  9. Pryor, W. A. et al. Free radical biology and medicine: it's a gas, man! Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R491–R511 (2006).

    Article  CAS  Google Scholar 

  10. Yamashita, K. et al. Ozone production by amino acids contributes to killing of bacteria. Proc. Natl Acad. Sci. USA 105, 16912–16917 (2008).

    Article  CAS  Google Scholar 

  11. Horvath, M., Bilitzky, L. & Huttner, J. Ozone (Elsevier, 1985).

    Google Scholar 

  12. Jimenez, A. M., Navas, M. J. & Galan, G. Air analysis: determination of ozone by chemiluminescence. Appl. Spectrosc. Rev. 32, 141–149 (1997).

    Article  CAS  Google Scholar 

  13. Parrish, D. D. & Fehsenfeld, F. C. Methods for gas-phase measurements of ozone, ozone precursors and aerosol precursors. Atmos. Environ. 34, 1921–1957 (2000).

    Article  CAS  Google Scholar 

  14. Williams, E. J. et al. Comparison of ultraviolet absorbance, chemiluminescence, and DOAS instruments for ambient ozone monitoring. Environ. Sci. Technol. 40, 5755–5762 (2006).

    Article  CAS  Google Scholar 

  15. Kuczkowski, R. L. 1,3-Dipolar Cycloaddition Chemistry (John Wiley, 1984).

    Google Scholar 

  16. Maruo, Y. Y. Measurement of ambient ozone using newly developed porous glass sensor. Sens. Actuat., B 126, 485–491 (2007).

    Article  CAS  Google Scholar 

  17. Li, J., Li, Q., Dyke, J. V. & Dasgupta, P. K. Atmospheric ozone measurement with an inexpensive and fully automated porous tube collector-colorimeter. Talanta 74, 958–964 (2008).

    Article  CAS  Google Scholar 

  18. Uchiyama, S. & Otsubo, Y. Simultaneous determination of ozone and carbonyls using trans-1,2-bis(4-pyridyl)ethylene as an ozone scrubber for 2,4-dinitrophenylhydrazine-impregnated silica cartridge. Anal. Chem. 80, 3285–3290 (2003).

    Article  Google Scholar 

  19. Soh, N. Recent advances in fluorescent probes for the detection of reactive oxygen species. Anal. Bioanal. Chem. 386, 532–543 (2006).

    Article  CAS  Google Scholar 

  20. Miller, E. W., Tulyathan, O., Isacoff, E. Y. & Chang, C. J. Molecular imaging of hydrogen peroxide produced for cell signaling. Nature Chem. Biol. 3, 263–267 (2007).

    Article  CAS  Google Scholar 

  21. Koide, K. et al. Scalable and concise synthesis of dichlorofluorescein derivatives displaying tissue permeation in live zebrafish embryos. ChemBioChem 9, 214–218 (2008).

    Article  CAS  Google Scholar 

  22. Song, F., Watanabe, S., Floreancig, P. E. & Koide, K. Oxidation-resistant fluorogenic probe for mercury based on alkyne oxymercuration. J. Am. Chem. Soc. 130, 16460–16461 (2008).

    Article  CAS  Google Scholar 

  23. Song, F., Garner, A. L. & Koide, K. A highly sensitive fluorescent sensor for palladium based on the allylic oxidative insertion mechanism. J. Am. Chem. Soc. 129, 12354–12355 (2007).

    Article  CAS  Google Scholar 

  24. Garner, A. L. & Koide, K. Oxidation state-specific fluorescent method for palladium(ii) and platinum(iv) based on the catalyzed aromatic Claisen rearrangement. J. Am. Chem. Soc. 130, 16472–16473 (2008).

    Article  CAS  Google Scholar 

  25. Garner, A. L. & Koide, K. Fluorescent method for platinum detection in buffers and serums for cancer medicine and occupational hazards. Chem. Commun. 83–85 (2009).

  26. Garner, A. L. & Koide, K. Studies of a fluorogenic probe for palladium and platinum leading to a palladium-specific detection method. Chem. Commun. 86–88 (2009).

  27. Garner, A. L., Song, F. & Koide, K. Enhancement of a catalysis-based fluorometric detection method for palladium through rational fine-tuning of the palladium species. J. Am. Chem. Soc. 131, 5163–5171 (2009).

    Article  CAS  Google Scholar 

  28. Chang, M. C. Y., Pralle, A., Isacoff, E. Y. & Chang, C. J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 126, 15392–15393 (2004).

    Article  CAS  Google Scholar 

  29. Mueller, S., Riedel, H-D. & Stremmel, W. Determination of catalase activity at physiological hydrogen peroxide concentrations. Anal. Biochem. 245, 55–60 (1997).

    Article  CAS  Google Scholar 

  30. Imlay, J. A. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776 (2008).

    Article  CAS  Google Scholar 

  31. Deisseroth, A. & Dounce, A. L. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev. 50, 319–375 (1970).

    Article  CAS  Google Scholar 

  32. Clennan, E. L. & Pace, A. Advances in singlet oxygen chemistry. Tetrahedron 61, 6665–6691 (2005).

    Article  CAS  Google Scholar 

  33. Sawyer, D. T. & Valentine, J. S. How super is superoxide? Acc. Chem. Res. 14, 393–400 (1981).

    Article  CAS  Google Scholar 

  34. Bailey, P. S. Ozonation in Organic Chemistry: Olefinic Compounds (Academic Press, 1978).

    Google Scholar 

  35. Pryor, W. A. How far does ozone penetrate into the pulmonary air/tissue boundary before it reacts? Free Radical Biol. Med. 12, 83–88 (1992).

    Article  CAS  Google Scholar 

  36. Pryor, W. A. Mechanisms of radical formation from reactions of ozone with target molecules in the lung. Free Radical Biol. Med. 17, 451–464 (1994).

    Article  CAS  Google Scholar 

  37. Mudway, I. S. & Kelly, F. J. Ozone and the lung: a sensitive issue. Mol. Aspects Med. 21, 1–48 (2000).

    Article  CAS  Google Scholar 

  38. Soini, E. & Hemmila, I. Fluoroimmunoassay: present status and key problems. Clin. Chem. 25, 353–361 (1979).

    CAS  PubMed  Google Scholar 

  39. Weschler, C. J. Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ. Health Perspect. 114, 1489–1496 (2006).

    Article  CAS  Google Scholar 

  40. Weschler, C. J. Ozone in indoor environments: concentration and chemistry. Indoor Air 10, 269–288 (2000).

    Article  CAS  Google Scholar 

  41. Ely, J. C. et al. Implications of platinum-group element accumulation along U.S. roads from catalytic-converter attrition. Environ. Sci. Technol. 35, 3816–3822 (2001).

    Article  CAS  Google Scholar 

  42. Nemec, A. A., Leikauf, G. D., Pitt, B. R., Wasserloos, K. J. & Barchowsky, A. Nickel mobilizes intracellular zinc to induce metallothionein in human airway epithelial cells. Am. J. Resp. Cell Mol. Biol. doi:10.1165/rcmb.2008-0409OC (2009).

Download references

Acknowledgements

We acknowledge support from the US National Science Foundation (to K.K.) and the US National Institutes of Health (to C.M.S., B.R.P. and G.D.L). We thank Yang Gao for determining the specificity of compound 8 for ozone.

Author information

Authors and Affiliations

Authors

Contributions

A.L.G., C.M.S., B.R.P, G.D.L. and K.K. designed the experiments. A.L.G. generated the data shown in Figs 2,  3 and  5. C.M.S. generated the data shown in Fig. 4. S.A. synthesized and characterized compound 8. A.L.G., C.M.S. and K.K. wrote the manuscript.

Corresponding author

Correspondence to Kazunori Koide.

Supplementary information

Supplementary information

Supplementary information (PDF 1755 kb)

Supplementary information

Supplementary Film S1 (MOV 1358 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garner, A., St Croix, C., Pitt, B. et al. Specific fluorogenic probes for ozone in biological and atmospheric samples. Nature Chem 1, 316–321 (2009). https://doi.org/10.1038/nchem.240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.240

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing