Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework

Abstract

Metal organic frameworks (MOFs) are among the most exciting materials discovered recently, attracting particular attention for their gas-adsorption and -storage properties. Certain MOFs show considerable structural flexibility in response to various stimuli. Although there are several examples of ‘breathing’ MOFs, in which structural changes occur without any bond breaking, examples of transformations in which several bonds are broken and made are much rarer. In this paper we demonstrate how a flexible MOF, Cu2(OH)(C8H3O7S)(H2O)·2H2O, can be synthesized by careful choice of the organic linker ligand. The flexibility can be controlled by addition of a supplementary coordinating molecule, which increases the thermal stability of the solid sufficiently for direct imaging with electron microscopy to be possible. We also demonstrate that the MOF shows unprecedented low-pressure selectivity towards nitric oxide through a coordination-driven gating mechanism. The chemical control over these behaviours offers new possibilities for the synthesis of MOFs with unusual and potentially exploitable properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The dehydration–rehydration transformations of Cu-SIP-3.
Figure 2: Large changes in coordination and connectivity on removal of coordinated water (shown as pink spheres).
Figure 3: The structure and electron microscopy of Cu-SIP-3-pyridine·H2O.
Figure 4: Adsorption isotherms for the dehydrated Cu-SIP-3 structure for a variety of atmospheres.

Similar content being viewed by others

References

  1. Wang, B., Cote, A. P., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature 453, 207–211 (2008).

    Article  CAS  Google Scholar 

  2. Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

    Article  CAS  Google Scholar 

  3. Cheetham, A. K. & Rao, C. N. R. Materials science: there's room in the middle. Science 318, 58–59 (2007).

    Article  CAS  Google Scholar 

  4. Eddaoudi, M. et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002).

    Article  CAS  Google Scholar 

  5. Morris, R.E. & Wheatley, P. S. Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47, 4966–4981 (2008).

    Article  CAS  Google Scholar 

  6. Dinca, M., Yu, A. F. & Long, J. R. Microporous metal–organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. J. Am. Chem. Soc. 128, 8904–8913 (2006).

    Article  CAS  Google Scholar 

  7. Panella, B., Hirscher, M., Putter, H. & Muller, U. Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16, 520–524 (2006).

    Article  CAS  Google Scholar 

  8. Xiao, B. et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal–organic framework. J. Am. Chem. Soc. 129, 1203–1209 (2007).

    Article  CAS  Google Scholar 

  9. Zhao, X. B. et al. Hysteretic adsorption and desorption of hydrogen by nanoporous metal–organic frameworks. Science 306, 1012–1015 (2004).

    Article  CAS  Google Scholar 

  10. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  11. Zhang, J. P., Lin, Y. Y., Zhang, W. X. & Chen, X. M. Temperature- or guest-induced drastic single-crystal-to-single-crystal transformations of a nanoporous coordination polymer. J. Am. Chem. Soc. 127, 14162–14163 (2005).

    Article  CAS  Google Scholar 

  12. Jia, J. et al. Triggered ligand release coupled to framework rearrangement: generating crystalline porous coordination materials. Inorg. Chem. 45, 8838–8840 (2006).

    Article  CAS  Google Scholar 

  13. Hanson, K., Calin, N., Bugaris, D., Scancella, M. & Sevov, S. C. Reversible repositioning of zinc atoms within single crystals of a zinc polycarboxylate with an open-framework structure. J. Am. Chem. Soc. 126, 10502–10503 (2004).

    Article  CAS  Google Scholar 

  14. Cussen, E. J., Claridge, J. B., Rosseinsky, M. J. & Kepert, C. J. Flexible sorption and transformation behavior in a microporous metal–organic framework. J. Am. Chem. Soc. 124, 9574–9581 (2002)

    Article  CAS  Google Scholar 

  15. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004)

    Article  CAS  Google Scholar 

  16. Ghosh, S. K., Zhang, J. P. & Kitagawa, S. Reversible topochemical transformation of a soft crystal of a coordination polymer. Angew. Chem. Int. Ed. 46, 7965–7968 (2007).

    Article  CAS  Google Scholar 

  17. Bradshaw, D., Warren, J. E. & Rosseinsky, M. J. Reversible concerted ligand substitution at alternating metal sites in an extended solid. Science 315, 977–980 (2007).

    Article  CAS  Google Scholar 

  18. Maji, T. K., Mostafa, G., Matsuda, R. & Kitagawa, S. Guest-induced asymmetry in a metal–organic porous solid with reversible single-crystal-to-single-crystal structural transformation. J. Am. Chem. Soc. 127, 17152–17153 (2005).

    Article  CAS  Google Scholar 

  19. Kim, D. S., Forster, P. M., Le Toquin, R. & Cheetham, A. K. A thermally stable nanoporous nickel 5-sulfoisophthalate; crystal structure and adsorption properties. Chem. Commun. 2148–2149 (2004).

  20. Liu, Q. Y., Yuan, D. Q. & Xu, L. Diversity of coordination architecture of copper(ii)-5-sulfoisophthalic acid: synthesis, crystal structures, and characterization. Cryst. Growth Des. 7, 1832–1843 (2007).

    Article  CAS  Google Scholar 

  21. Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n . Science 283, 1148–1150 (1999).

    Article  CAS  Google Scholar 

  22. Chen, B. L., Ockwig, N. W., Millward, A. R., Contreras, D. S. & Yaghi, O. M. High H2 adsorption in a microporous metal–organic framework with open metal sites. Angew. Chem. Int. Ed. 44, 4745–4749 (2005).

    Article  CAS  Google Scholar 

  23. Ferey, G. et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science 309, 2040–2042 (2005).

    Article  CAS  Google Scholar 

  24. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  25. Lebedev, O. I., Millange, F., Serre, C., Van Tendeloo, G. & Ferey, G. First direct imaging of giant pores of the metal–organic framework MIL-101. Chem. Mater. 17, 6525–6527 (2005).

    Article  CAS  Google Scholar 

  26. Zhou, W. Microscopic study of crystal defects enriches our knowledge of materials chemistry. J. Mater. Chem. 18, 5321–5325 (2008).

    Article  CAS  Google Scholar 

  27. Kitaura, R., Seki, K., Akiyama, G. & Kitagawa, S. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew Chem. Int. Ed. 42, 428–431 (2003).

    Article  CAS  Google Scholar 

  28. Uchida, S. & Mizuno, N. Design and synthesis of nano-structured ionic crystals with selective adsorption properties. Coord. Chem. Rev. 251, 2537–2546 (2007).

    Article  CAS  Google Scholar 

  29. Tanaka, D. et al. Kinetic gate-opening process in a flexible porous coordination polymers. Angew Chem. Int. Ed. 47, 3914–3918 (2008)

    Article  CAS  Google Scholar 

  30. Keefer, L. K. Biomaterials—thwarting thrombus. Nature Mater. 2, 357–358 (2003).

    Article  CAS  Google Scholar 

  31. Wheatley, P. S. et al. NO-releasing zeolites and their antithrombotic properties. J. Am. Chem. Soc. 128, 502–509 (2006).

    Article  CAS  Google Scholar 

  32. Mowbray, M., Tan, X. J., Wheatley, P. S., Morris, R. E. & Weller, R. B. Topically applied nitric oxide induces T-lymphocyte infiltration in human skin, but minimal inflammation. J. Invest. Dermatol. 128, 352–360 (2008).

    Article  CAS  Google Scholar 

  33. McKinlay, A. C. et al. Exceptional behavior over the whole adsorption–storage–delivery cycle for NO in porous metal organic frameworks. J. Am. Chem. Soc. 130, 10440–10444 (2008).

    Article  CAS  Google Scholar 

  34. Bradshaw, D., Prior, T. J., Cussen, E., Claridge, J. B. & Rosseinsky, M. J. Permanent microporosity and enantioselective sorption in a chiral open framework. J. Am. Chem. Soc. 126, 6106–6114 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the Engineering and Physical Sciences Research Council and the gas-enabled medical interventions (GEMI) fund. R.E.M. is a Royal Society Wolfson Merit Award holder.

Author information

Authors and Affiliations

Authors

Contributions

B.X. and R.E.M conceived and designed the experiments, B.X. completed the synthesis, P.S.W, P.J.B., D.S.W and J.E.W performed the single-crystal diffraction, L.P and J.S.O.E completed the powder-diffraction experiments, B.X., A.J.F., X.Z and K.M.T. completed the adsorption and W.Z. performed the electron microscopy.

Corresponding author

Correspondence to Russell E. Morris.

Supplementary information

Supplementary information

Supplementary information (PDF 2072 kb)

Supplementary information

Crystallographic information for the hydrated form of Cu-SIP-3 (CIF 11 kb)

Supplementary information

Crystallographic information for the dehydrated form of Cu-SIP-3 (CIF 15 kb)

Supplementary information

Crystallographic information for Cu-SIP-3 with coordinated pyridine (CIF 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, B., Byrne, P., Wheatley, P. et al. Chemically blockable transformation and ultraselective low-pressure gas adsorption in a non-porous metal organic framework. Nature Chem 1, 289–294 (2009). https://doi.org/10.1038/nchem.254

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.254

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing