Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Designer magnetic superatoms

Abstract

The quantum states in metal clusters are grouped into bunches of close-lying eigenvalues, termed electronic shells, similar to those of atoms. Filling of the electronic shells with paired electrons results in local minima in energy to give stable species called magic clusters. This led to the realization that selected clusters mimic chemical properties of elemental atoms on the periodic table and can be classified as superatoms. So far the work on superatoms has focused on non-magnetic species. Here we propose a framework for magnetic superatoms by invoking systems that have both localized and delocalized electronic states, in which localized electrons stabilize magnetic moments and filled nearly-free electron shells lead to stable species. An isolated VCs8 and a ligated MnAu24(SH)18 are shown to be such magnetic superatoms. The magnetic superatoms' assemblies could be ideal for molecular electronic devices, as the coupling could be altered by charging or weak fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ground-state geometries of VNan and VCsn clusters.
Figure 2: Energetic and magnetic trends of VNan and VCsn clusters.
Figure 3: One-electron energy levels and molecular orbital charge density isosurfaces (isovalue 0.035 coulomb m−3) in the VNa8 cluster.
Figure 4: Lowest-energy structures of V2Na16 and the (VCs8)2 dimer, and total and net spin electron density of VCs8.
Figure 5: Total and net spin electron density and density of states (DOS) of the MnAu24(SH)18 cluster.

Similar content being viewed by others

References

  1. Khanna, S. N. & Jena, P. Atomic clusters—building-blocks for a class of solids. Phys. Rev. B. 51, 13705–13716 (1995).

    Article  CAS  Google Scholar 

  2. Ashman, C. et al. (BAl12)Cs: a cluster-assembled solid. Phys. Rev. B 55, 15868–15875 (1997).

    Article  CAS  Google Scholar 

  3. Kumar, V. & Kawazoe, Y. Metal encapsulated icosahedral superatoms of germanium and tin with large gaps: Zn@Ge12 and Cd@Sn12 . Appl. Phys. Lett. 80, 859–861 (2002).

    Article  CAS  Google Scholar 

  4. Neukermans, S. et al. Extremely stable metal-encapsulated AlPb10+ and AlPb12+ clusters. Phys. Rev. Lett. 92, 163401 (2004).

    Article  CAS  Google Scholar 

  5. Bergeron, D. E., Castleman, A. W. Jr, Morisato, T. & Khanna, S. N. Formation of Al13I: evidence for the superhalogen character of Al13. Science 304, 84–87 (2004).

    Article  CAS  Google Scholar 

  6. Bergeron, D. E., Roach, P. J., Castleman, A. W. Jr, Jones, N. O. & Khanna, S. N. Al cluster superatoms as halogens in polyhalides and as alkaline earths in iodide salts. Science 307, 231–235 (2005).

    Article  CAS  Google Scholar 

  7. Reveles, J. U., Khanna, S. N., Roach, P. J. & Castleman, A. W. Jr Multiple valence superatoms. Proc. Natl Acad. Sci. USA 103, 18405–18410 (2006).

    Article  CAS  Google Scholar 

  8. Castleman, A. W. Jr et al. From designer clusters to synthetic crystalline nanoassemblies. Nano Lett. 7, 2734–2741 (2007).

    Article  CAS  Google Scholar 

  9. Hartig, J., Stösser, A., Hauser, P. & Schnöckel, H. A metalloid [Ga23{N(SiMe3)2}11] cluster: the jellium model put to test. Angew Chem. Int. Ed. 46, 1658–1662 (2007).

    Article  CAS  Google Scholar 

  10. Castleman, A. W. Jr & Khanna, S. N. Clusters, superatoms and building blocks of new materials. J. Phys. Chem. C 113, 2664–2675 (2009).

    Article  CAS  Google Scholar 

  11. Knight, W. D. et al. Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52, 2141–2143 (1984).

    Article  CAS  Google Scholar 

  12. de Heer, W. A. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65, 611–676 (1994).

    Article  Google Scholar 

  13. Brack, M. The physics of simple metal clusters, self-consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65, 677–732 (1993).

    Article  CAS  Google Scholar 

  14. Janssens, E., Neukermans, S. & Lievens, P. Shells of electrons in metal doped simple metal clusters. Curr. Opin. Solid State Mater. Sci. 8, 185–193 (2004).

    Article  CAS  Google Scholar 

  15. Li, X., Wu, H., Wang, X.-B. & Wang, L.-S. s–p hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopy study. Phys. Rev. Lett. 81, 1909–1912 (1998).

    Article  CAS  Google Scholar 

  16. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Article  CAS  Google Scholar 

  17. Walter, M. et al. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl Acad. Sci. USA 105, 9157–9162 (2008).

    Article  CAS  Google Scholar 

  18. Akola, J., Walter, M., Whetten, R. L., Hakkinen, H. & Gronbeck, H. On the structure of thiolate-protected Au25 . J. Am. Chem. Soc. 130, 3756–3757 (2008).

    Article  CAS  Google Scholar 

  19. Pederson, M. R., Reuse, F. & Khanna, S. N. Magnetic transition in Mnn (n = 2–8) clusters. Phys. Rev. B 58, 5632–5636 (1998).

    Article  CAS  Google Scholar 

  20. Desmarais, N., Reuse, F. A. & Khanna, S. N. Magnetic coupling in neutral and charged Cr2, Mn2, and CrMn dimers. J. Chem. Phys. 112, 5576–5584 (2000).

    Article  CAS  Google Scholar 

  21. Tzeli, D., Miranda, U., Kaplan, I. G. & Mavridis, A. First principles study of the electronic structure and bonding of Mn2 . J. Chem. Phys. 129, 154310 (2008).

    Article  Google Scholar 

  22. Dorantes-Davila, J. & Dreysse, H. Magnetic behavior of small vanadium clusters. Phys. Rev. B 47, 3857–3863 (1993).

    Article  CAS  Google Scholar 

  23. Song, F. & Bergmann, G. Strongly enhanced magnetic moments of vanadium impurities in thin films of sodium and potassium. Phys. Rev. Lett. 88, 167202 (2002).

    Article  Google Scholar 

  24. Bergmann, G. & Song, F. Electronic transition of vanadium impurities in different alkali hosts. J. Magn. Magn. Mater. 272, E863–E864 (2004).

    Article  Google Scholar 

  25. Sahu, B. R. & Kleinman, L. Nonenhancement of magnetic moments on transition metal impurities by alkali metal hosts. Phys. Rev. B 67, 094424 (2003).

    Article  Google Scholar 

  26. Pradhan, K., Sen, P., Reveles, J. U. & Khanna, S. N. First principles study of Sc, Ti, and V doped Nan (n = 4, 5, 6) clusters: enhanced magnetic moments. Phys. Rev. B 77, 045408 (2008).

    Article  Google Scholar 

  27. Gong, X. G. & Zheng, Q. Q. Electronic structures and stability of Si60 and C60@Si60 clusters. Phys. Rev. B 52, 4756–47595 (1995).

    Article  CAS  Google Scholar 

  28. Sattler, K. (ed.) Cluster Assembled Materials (Trans Tech Publications, 1996).

    Google Scholar 

  29. Perez, A. et al. Cluster assembled materials: a novel class of nanostructured solids with original structures and properties. J. Phys. D 30, 709–721 (1997).

    Article  CAS  Google Scholar 

  30. Jena, P., Khanna, S. N. & Rao, B. K. (eds) Clusters and Nano-Assemblies (World Scientific, 2003).

    Google Scholar 

  31. Mikhailov, M. N., Kustov, L. M. & Kazansky, V. B. The state and reactivity of Pt6 particles in ZSM-5 zeolite. Catal. Lett. 120, 8–13 (2008).

    Article  CAS  Google Scholar 

  32. Khanna, S. N. & Jena, P. Designing ionic solids from metallic clusters. Chem. Phys. Lett. 219, 479–483 (1994).

    Article  CAS  Google Scholar 

  33. Reber, A. C., Khanna, S. N. & Castleman, A. W. Jr Superatom compounds, clusters, and assemblies: ultra alkali motifs and architectures. J. Am. Chem. Soc. 129, 10189–10194 (2007).

    Article  CAS  Google Scholar 

  34. Zhu, M., Aikens, C. M., Hollander, F. J., Schatz, G. C. & Jin, R. Correlating the crystal structure of a thiol-protected Au cluster and optical properties. J. Am. Chem. Soc. 130, 5883–5885 (2007).

    Article  Google Scholar 

  35. Sessoli, R., Gatteschi, D. & Wernsdorfer, W. Quantum tunneling of the magnetization in molecular nanoclusters in Quantum Phenomena in Clusters and Nanostructures (eds Khanna S. N. & Castleman, A. W. Jr), 55–79 (Springer, 1993).

  36. Zimbovskaya, N. A. & Pederson, M. R. Negative differential resistance in molecular junctions: effect of the electronic structure of the electrodes. Phys. Rev. B 78, 153105 (2008).

    Article  Google Scholar 

  37. Ashman, C., Khanna, S. N., Pederson, M. R. & Kortus, J. Al7CX (X = Li–Cs) clusters: stability and the prospect for cluster materials. Phys. Rev. B 62, 16956–16961 (2000).

    Article  CAS  Google Scholar 

  38. Koster, A. M. et al. deMon2 k, V. 2.3.6 (The deMon Developers Community, Cinvestav, México, 2006).

  39. Pederson, M. R. & Jackson, K. A. Variational mesh for quantum-mechanical simulations. Phys. Rev. B 41, 7453–7461 (1990).

    Article  CAS  Google Scholar 

  40. Jackson, K. & Pederson, M. R. Accurate forces in a local-orbital approach to the local-density approximation. Phys. Rev. B 42, 3276–3281 (1990).

    Article  CAS  Google Scholar 

  41. Porezag, D. & Pederson, M. R. Optimization of Gaussian basis sets for density-functional calculations. Phys. Rev. A 60, 2840–2847 (1999).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, F. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  43. Kresse, G. & Furthmüller, F. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from the US Department of the Army through a MURI grant. Parts of the computations were performed at the cluster computing facility at the Harish-Chandra Research Institute, and on the computational equipment of La Dirección General de Servicios de Cómputo Académico de la Universidad Nacional Autónoma de México, particularly at the super computer KanBalam.

Author information

Authors and Affiliations

Authors

Contributions

All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Shiv N. Khanna.

Supplementary information

Supplementary information

Supplementary information (PDF 724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reveles, J., Clayborne, P., Reber, A. et al. Designer magnetic superatoms. Nature Chem 1, 310–315 (2009). https://doi.org/10.1038/nchem.249

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.249

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing