Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Concise synthesis of ricciocarpin A and discovery of a more potent analogue

Abstract

Cascade reactions enable the rapid build-up of molecular complexity from relatively simple starting materials. Both rapid construction and the ability to prepare related structures are crucial to the study of biological activities. Here, we report an efficient, highly enantioselective and diastereoselective total synthesis of ricciocarpin A. The key feature of the synthesis is a one-pot, three-step, organocatalytic reductive Michael–Tishchenko cascade. The conciseness and flexibility of this approach not only resulted in the synthesis of the natural product, but also of its antipode and four other structural analogues. A preliminary biological evaluation of these compounds identified an analogue with significantly improved molluscicidal activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retrosynthetic strategy to access (+)-1 and analogues.
Figure 2: Two-step synthesis of substrate 3.
Figure 3: Total synthesis of (+)-1 by a reductive Michael–Tishchenko cascade.
Figure 4: Synthesis of (+)-1 analogues.

Similar content being viewed by others

References

  1. Mukherjee, S., Yang, J. W., Hoffmann, S. & List, B. Asymmetric enamine catalysis. Chem. Rev. 107, 5471–5569 (2007).

    Article  CAS  Google Scholar 

  2. Erkkilä, A., Majander, I. & Pihko, P. M. Iminium catalysis. Chem. Rev. 107, 5416–5470 (2007).

    Article  Google Scholar 

  3. List, B. Asymmetric aminocatalysis. Synlett 11, 1675–1686 (2001).

    Article  Google Scholar 

  4. Notz, W., Tanaka, F. & Barbas, C. F. III . Enamine-based oganocatalysis with proline and diamines: the development of direct catalytic asymmetric aldol, Mannich, Michael, and Diels–Alder reactions. Acc. Chem. Res. 37, 580–591 (2004).

    Article  CAS  Google Scholar 

  5. Lelais, G. & MacMillan, D. W. C. Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichim. Acta 39, 79–87 (2006).

    CAS  Google Scholar 

  6. Yang, J. W., Hechavarria Fonseca, M. T. & List, B. Catalytic asymmetric reductive Michael cyclization. J. Am. Chem. Soc. 127, 15036–15037 (2005).

    Article  CAS  Google Scholar 

  7. Hechavarria Fonseca, M. T. & List, B. Catalytic asymmetric intramolecular Michael reaction of aldehydes. Angew. Chem. Int. Ed. 43, 3958–3960 (2004).

    Article  CAS  Google Scholar 

  8. Halland, N., Hazell, R. G. & Jørgensen, K. A. Organocatalytic asymmetric conjugate addition of nitroalkanes to α,β-unsaturated enones using novel imidazoline catalysts. J. Org. Chem. 67, 8331–8338 (2002).

    Article  CAS  Google Scholar 

  9. Peelen, T. J., Chi, Y. & Gellman, S. H. Enantioselective organocatalytic Michael additions of aldehydes to enones with imidazolidinones: cocatalyst effects and evidence for an enamine intermediate. J. Am. Chem. Soc., 127, 11598–11599 (2005).

    Article  CAS  Google Scholar 

  10. Hayashi, Y., Gotoh, H., Tamura, T., Yamaguchi, H., Masui, R. & Shoji, M. Cysteine-derived organocatalyst in a highly enantioselective intramolecular Michael reaction. J. Am. Chem. Soc. 127, 16028–16029 (2005).

    Article  CAS  Google Scholar 

  11. Mase, N., Watanabe, K., Yoda, H., Takabe, K., Tanaka, F. & Barbas, C. F. III. Organocatalytic direct Michael reaction of ketones and aldehydes with β-nitrostyrene in brine. J. Am. Chem. Soc. 128, 4966–4967 (2006).

    Article  CAS  Google Scholar 

  12. Weinstain, R., Lerner, R. A., Barbas, C. F. III & Shabat, D. Antibody-catalyzed asymmetric intramolecular Michael addition of aldehydes and ketones to yield the disfavored cis-product. J. Am. Chem. Soc. 127, 13104–13105 (2005).

    Article  CAS  Google Scholar 

  13. Yong, H., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005).

    Article  Google Scholar 

  14. Wurzel, G. & Becker, H. Sesquiterpenoids from the liverwort Ricciocarpos natans. Phytochemistry 29, 2565–2568 (1990).

  15. Wurzel, G., Becker, H., Eicher, H. T. & Tiefensee, K. Molluscicidal properties of constituents from the liverwort Ricciocarpos natans and of synthetic lunularic acid derivatives. Planta Med. 56, 444–445 (1990).

    Article  CAS  Google Scholar 

  16. Zinsmeister, H. D., Becker, H. & Eicher, T. Bryophytes, a source of biologically active, naturally occurring material? Angew. Chem. Int. Ed. 30, 130–147 (1991).

    Article  Google Scholar 

  17. Schreier, T. M., Dawson, V. K., Choi, Y., Spanjers, N. J. & Boogaard, M. A. J. Determination of niclosamide residues in rainbow trout (Oncorhynchus mykiss) and channel catfish (Ictalurus punctatus) fillet tissue by high-performance liquid chromatography. Agric. Food Chem. 48, 2212–2215 (2000).

    Article  CAS  Google Scholar 

  18. Eicher, T., Massonne, K. & Herrmann, M. Synthese von bryophyten-inhaltsstoffen 4. Synthesen des Ricciocarpins A. Synthesis 1173–1176 (1991).

  19. Ihara, M., Suzuki, S., Taniguchi, N. & Fukumoto, K. Deconjugation of α,β-unsaturated esters and an intramolecular Michael reaction of bis-α,β-unsaturated esters with trialkylsilyl trifluoromethanesulfonate in the presence of tertiary amine: synthesis of (±)-ricciocarpin A. J. Chem. Soc. Perkin Trans. 1 2251–2258 (1993).

  20. Ihara, M., Suzuki, S., Taniguchi, N. & Fukumoto, K. Intramolecular Michael reaction using trialkylsilyl trifluoromethanesulfonates and tertiary amine system: total synthesis of (±)-ricciocarpin A. J. Chem. Soc. Chem. Commun. 755–756 (1993).

  21. Takeda, K., Ohkawa, N., Hori, K., Koizumi, T. & Yoshii, E. A short synthesis of (±)-ricciocarpin A using intramolecular reductive Michael reaction. Heterocycles 47, 277–282 (1998).

    Article  CAS  Google Scholar 

  22. Agapiou, K. & Krische, M. J. Catalytic crossed Michael cycloisomerization of thioenoates: total synthesis of (±)-ricciocarpin A. Org. Lett. 5, 1737–1740 (2003).

    Article  CAS  Google Scholar 

  23. Held, C., Frohlich, R. & Metz, P. Enantioselective synthesis of the ricciocarpins A and B. Angew. Chem. Int. Ed. 40, 1058–1060 (2001).

    Article  CAS  Google Scholar 

  24. Held, C., Frohlich, R. & Metz, P. Enantioselective synthesis of the molluscicidal furanosesquiterpene lactones ricciocarpin A and ricciocarpin B via ring closing metathesis. Adv. Synth. Catal. 344, 720–727 (2002).

    Article  CAS  Google Scholar 

  25. Sibi, M. P. & He, L. Application of enantioselective radical reactions: synthesis of (+)-ricciocarpins A and B. Org. Lett. 6, 1749–1752 (2004).

    Article  CAS  Google Scholar 

  26. Ning-Wei, J. & Hsing-Jang, L. An enantioselective total synthesis of (+)-ricciocarpin A. Org. Lett. 8, 151–153 (2006).

    Article  Google Scholar 

  27. Palombo, E., Audran, G. & Montir, H. Enantioselective synthesis of (+)-ricciocarpin A using an auxiliary hydroxyl group and a diastereofacial selectivity based methodology. Synlett 13, 2104–2106 (2005).

    Google Scholar 

  28. Connon, S. J. & Blechert, S. Recent developments in olefin cross-metathesis. Angew. Chem. Int. Ed. 42, 1900–1923 (2003).

    Article  CAS  Google Scholar 

  29. Grela, K., Harutyunyan, S. & Michrowska, A. A highly efficient ruthenium catalyst for metathesis reactions. Angew. Chem. Int. Ed. 41, 4038–4040 (2002).

    Article  CAS  Google Scholar 

  30. Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    Article  CAS  Google Scholar 

  31. Hoffmann, R. W. Protecting-group-free synthesis. Synthesis 3531–3541 (2006).

Download references

Acknowledgements

We thank M. T. Hechavarria Fonseca for early experiments, C. W. Lehmann and J. Rust for X-ray analyses and M. Hannappel for technical assistance. A.M. thanks the Alexander von Humboldt Foundation for a fellowship and Mike Doenhoff for help with the bioassay and for providing the snails (original stock of B. alexandrina supplied by S. Botros). The authors acknowledge generous funding from the Max Planck Society, the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin List.

Supplementary information

Supplementary information

Supplementary information (PDF 1234 kb)

Crystallographic data for compound 2

Supplementary information (CIF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michrowska, A., List, B. Concise synthesis of ricciocarpin A and discovery of a more potent analogue. Nature Chem 1, 225–228 (2009). https://doi.org/10.1038/nchem.215

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing