Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic behaviour of dense hot water

Abstract

Water is known to exhibit fascinating physical properties at high pressure and temperature. Its remarkable structural and phase complexities suggest the possibility of exotic chemical reactivity under extreme conditions, although this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of kelvin and tens of gigapascals, similar to conditions in the interiors of giant planets. These systems thus provide a unique means of elucidating the chemistry of ‘extreme water’. Here, we show that water has an unexpected role in catalysing complex explosive reactions—contrary to the current view that it is simply a stable detonation product. Using first-principles atomistic simulations of the detonation of the high explosive pentaerythritol tetranitrate, we discovered that H2O (source), H (reducer) and OH (oxidizer) act as a dynamic team that transports oxygen between reaction centres. Our finding suggests that water may catalyse reactions in other explosives and in planetary interiors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initial MD configuration and example simulation snapshots.
Figure 2: Catalytic cycle of local reaction centres, demonstrating oxygen transportation from nitrogen to carbon and hydrogen.
Figure 3: Overwhelming participation of hydrogen in the majority of reactions.
Figure 4: Hydrogen is more mobile than other heavier atoms.
Figure 5: Atomic charge distributions obtained at the Chapman–Jouguet condition.

Similar content being viewed by others

References

  1. Hubbard, W. B. Neptune's deep chemistry. Science 275, 1279–1280 (1997).

    Article  CAS  Google Scholar 

  2. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    Article  CAS  Google Scholar 

  3. Hemley, R. J. et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar). Nature 330, 737–740 (1987).

    Article  CAS  Google Scholar 

  4. Goncharov, A. F., Struzhkin, V. V., Somayazulu, M. S., Hemley, R. J. & Mao, H. K. Compression of ice to 210 gigapascals: Infrared evidence for a symmetric hydrogen-bonded phase. Science 273, 218–220 (1996).

    Article  CAS  Google Scholar 

  5. Goncharov, A.F. et al. Dynamic ionization of water under extreme conditions. Phys. Rev. Lett. 94, 125508 (2005).

    Article  Google Scholar 

  6. Goldman, N., Fried, L. E., Kuo, I. F. W. & Mundy, C. J. Bonding in the superionic phase of water. Phys. Rev. Lett. 94, 217801 (2005).

    Article  Google Scholar 

  7. Lin, J. F. et al. Melting behavior of H2O at high pressures and temperatures. Geophys. Res. Lett. 32, L11306 (2005).

    Article  Google Scholar 

  8. Holmes, N. C., Nellis, W. J., Graham, W. B. & Walrafen, G. E. Spontaneous Raman scattering from shocked water. Phys. Rev. Lett. 55, 2433–2436 (1985).

    Article  CAS  Google Scholar 

  9. Schwegler, E., Galli, G., Gygi, F. & Hood, R. Q. Dissociation of water under pressure. Phys. Rev. Lett. 87, 265501 (2001).

    Article  CAS  Google Scholar 

  10. Ding, Z. Y., Frisch, M. A., Li, L. & Gloyna, E. F. Catalytic oxidation in supercritical water. Ind. Eng. Chem. Res. 35, 3257–3279 (1996).

    Article  CAS  Google Scholar 

  11. Farinacci, N. T. & Hammett, L. P. Polymolecular solvolytic reactions: Water catalysis in the alcoholysis of benzhydryl chloride. J. Am. Chem. Soc. 59, 2542–2546 (1937).

    Article  CAS  Google Scholar 

  12. Vohringer-Martinez, E. et al. Water catalysis of a radical-molecule gas-phase reaction. Science 315, 497–501 (2007).

    Article  CAS  Google Scholar 

  13. Smith, I. Single-molecule catalysis. Science 315, 470–471 (2007).

    Article  CAS  Google Scholar 

  14. Ree, F. H. A statistical mechanical theory of chemically reacting multiphase mixtures: Application to the detonation properties of PETN. J. Chem. Phys. 81, 1251–1263 (1984).

    Article  CAS  Google Scholar 

  15. Fried, L. E. & Howard, W. M. An accurate equation of state for the exponential-6 fluid applied to dense nitrogen. J. Chem. Phys. 109, 7338–7348 (1998).

    Article  CAS  Google Scholar 

  16. Ng, W. L., Field, J. E. & Hauser, H. M. Thermal, fracture, and laser-induced decomposition of pentaerythritol tetranitrate. J. Appl. Phys. 59, 3945–3952 (1986).

    Article  CAS  Google Scholar 

  17. Gruzdkov, Y. A. & Gupta, Y. M. Shock wave initiation of pentaerythritol tetranitrate crystals: Mechanism of anisotropic sensitivity. J. Phys. Chem. A 104, 11169–11176 (2000).

    Article  CAS  Google Scholar 

  18. Yoo, C. S. et al. Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal. J. Appl. Phys. 88, 70–75 (2000).

    Article  CAS  Google Scholar 

  19. Tarver, C. M., Tran, T. D. & Whipple, R. E. Thermal decomposition of pentaerythritol tetranitrate. Propell. Explos. Pyrot. 28 189–193 (2003).

    Article  CAS  Google Scholar 

  20. Wu, C. J., Manaa, M. R. & Fried, L. E. Tight binding molecular dynamic simulation of PETN decomposition at an extreme condition. Proc. Mater. Res. Soc., 987, 139–144 (2007).

    CAS  Google Scholar 

  21. Manaa, M. R., Fried, L. E., Melius, C. F., Elstner, M. & Frauenheim, T. Decomposition of HMX at extreme conditions: A molecular dynamics simulation, J. Phys. Chem. A 106, 9024–9029 (2002).

    Article  CAS  Google Scholar 

  22. Strachan, A., van Duin, A. C. T., Chakraborty, D., Dasgupta, S. & Goddard, W. A. III Shock waves in high-energy materials: The initial chemical events in nitramine RDX. Phys. Rev. Lett. 91, 098301 (2003).

    Article  Google Scholar 

  23. Strachan, A., Kober, E. M., van Duin, A. C. T., Oxgaard, J. & Goddard, W. A. III Thermal decomposition of RDX from reactive molecular dynamics. J. Chem. Phys. 122, 054502 (2005).

    Article  Google Scholar 

  24. Nomura, K. et al. Dynamic transition in the structure of an energetic crystal during chemical reactions at shock front prior to detonation. Phys. Rev. Lett. 99, 148303 (2007).

    Article  Google Scholar 

  25. Reed, E. J., Manna, M. R., Fried, L. E., Glaesemann, K. R. & Joannopoulos, J. D. A transient semimetallic layer in detonating nitromethane. Nature Phys. 4, 72–76 (2008).

    Article  CAS  Google Scholar 

  26. Westbrook, C. K. & Dryer, F. L. Chemical kinetic modeling of hydrocarbon combustion. Prog. Energy Combust. 10, 1–57 (1984).

    Article  CAS  Google Scholar 

  27. Westbrook, C. K. Chemical kinetics of hydrocarbon ignition in practical combusion systems. Proc. Combust. Inst. 28, 1563–1577 (2000).

    Article  CAS  Google Scholar 

  28. Giguere, P. A. Great fallacy of the H+ ion and the true nature of H3O+. J. Chem. Educ. 56, 571–575 (1979).

    Article  CAS  Google Scholar 

  29. Pauling, L. The Nature of the Chemical Bond 90 (Cornell Univ. Press, 1960).

    Google Scholar 

  30. Bastea, S. & Fried, L. E. Exp6-polar thermodynamics of dense supercritical water. J. Chem. Phys. 128, 174502 (2008).

    Article  Google Scholar 

  31. Hansen, J. P. & McDonald, I. R. Statistical mechanics of dense ionized matter. IV. Density and charge fluctuations in a simple molten salt. Phys. Rev. A 11, 2111–2123 (1975).

    Article  Google Scholar 

  32. Wilke, S. D., Chen, H. C. & Bosse, J. Dielectric and transport properties of a supercooled symmetrical molten salt. Phys. Rev. E. 60, 3136–3149 (1999).

    Article  CAS  Google Scholar 

  33. Clipper Controls. Dielectric Constant Reference Guide <http://clippercontrols.com/info/dielectric_constants.html> (2007).

  34. Hayes, B. On electrical conductivity in detonation products. Proc. 4th Int. Symp. Detonation, White Oak, Massachusetts 595–601 (Office of Naval Research, Department of the Navy, October 1965).

  35. Weinert, U. & Mason, E. A. Generalized Nernst–Einstein relations for nonlinear transport coefficients. Phys. Rev. A 21, 681–690 (1980).

    Article  CAS  Google Scholar 

  36. Booth, A. D. & Llewellyn, F. J. The crystal structure of pentaerythritol tetranitrate. J. Chem. Soc. 837–846 (1947).

  37. Trotter, J. Bond lengths and angles in pentaerythritol tetranitrate. Acta Crystallogr. 16, 698–699 (1963).

    Article  CAS  Google Scholar 

  38. Yang, L. H., Hood, R. Q., Pask, J. E. & Klepeis, J. E. Large-scale quantum mechanical simulations of high-Z metals. J. Computer-Aided Mater. Design 14, 337–347 (2007).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  40. Troullier, N. & Martins, J. L. Efficient pesudopotentials for plane-wave calculations. Phys. Rev. B 43, 1993–2006 (1991).

    Article  CAS  Google Scholar 

  41. Brown, D. & Clarke, J. H. R. A comparison of constant energy, constant temperature and constant pressure ensembles in molecular-dynamics simulations of atomic liquids. Mol. Phys. 51, 1243–1254 (1999).

    Article  Google Scholar 

  42. Frauenheim, T. et al. A self-consistent charge density-functional based tight-binding method for predictive materials simulations in physics, chemistry and biology. Phys. Status Solidi B 217, 41–62 (2000).

    Article  CAS  Google Scholar 

  43. Mulliken, R. S. Electron population analysis on LCAO-MO molecular wave functions. J. Chem. Phys. 23, 1833–1840 (1955).

    Article  CAS  Google Scholar 

  44. CP2K Developers Group. CP2K Code <http://cpk2.berlios.de> (2000–2006).

  45. Van de Vondele, J. et al. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344. The project 06-SI-005 was funded by the Laboratory Directed Research and Development Program at LLNL. The authors would like to express their sincere appreciation to E. Reed for useful discussion and to L. Krauss, K. Kline and J. McInnis for their contributions to the preparation of the manuscript and figures.

Author information

Authors and Affiliations

Authors

Contributions

C.J.W. originated the central idea, performed and analysed the PETN MD simulations, and wrote the paper; L.E.F. developed the molecular analyser code and contributed to the writing of the paper; L.H.Y. carried out Quantum MD code development; N.G. contributed to Mulliken charge analysis; S.B. performed conductivity and dielectric constant calculations; all of the authors contributed to discussions and editing of the manuscript.

Corresponding author

Correspondence to Christine J. Wu.

Supplementary information

Supplementary Information

Supplementary Information (PDF 775 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Fried, L., Yang, L. et al. Catalytic behaviour of dense hot water. Nature Chem 1, 57–62 (2009). https://doi.org/10.1038/nchem.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing