Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors

A Corrigendum to this article was published on 01 May 2009

This article has been updated

Abstract

Methods allowing chemical reactions to be carried out on ultra-small scales in a controllable fashion are potentially important for a number of disciplines, including molecular electronics, photonics and molecular biology, and may provide fundamental insight into chemistry in confined spaces. Ultra-small-scale reactions also circumvent potential problems associated with reagent and product toxicity, and reduce energy consumption and waste generation. Here, we report a technique for performing chemical reactions on a zeptomole (10−21 mol) scale. We show that electrospun polymer nanofibres with a diameter of 100–300 nm can be loaded with reactants, and that the junctions formed between crossed nanofibres can function as attolitre-volume reactors. Exposure to heat or solvent vapours fuses the fibres and initiates the reaction. The reaction products can be analysed directly within the nanofibre junctions by fluorescence measurements and mass spectrometry, and solvent extraction of multiple reactors allows product identification by common micromethods such as high-performance liquid chromatography–mass spectrometry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The principle of attolitre reactor formation.
Figure 2: Formation of reaction products at the junction of crossed polymer nanofibres.
Figure 3: Reagent diffusion in nanofibre junctions.
Figure 4: The diffusion-limited nature of reactions in an attoreactor.
Figure 5: Reaction of a macromolecular substrate in an attoreactor.

Similar content being viewed by others

Change history

  • 16 March 2009

    In the version of this Article originally published, in paragraph six of the main text, the concentration of reagents in the fibre after evaporation of the solvent was incorrectly given as 0.5 mol l-1, this should have read 0.5 mmol l-1. This has been corrected in the HTML and PDF versions of the Article.

  • 27 March 2009

    In the version of this Article originally published, the structure given in Fig. 3a for rhodamine 6G (compound 5) was incorrect. The error has now been corrected in the HTML and PDF versions.

References

  1. Koch, M. V., VandenBussche, K. M. & Chrisman, R. W. (eds) Micro Instrumentation for High Throughput Experimentation and Process Intensification (Wiley-VCH, 2007).

    Google Scholar 

  2. Yoshida, J.-I. Flash Chemistry: Fast Organic Synthesis in Microsystems (Wiley, 2008).

    Book  Google Scholar 

  3. Nie, S., Chiu, D. T. & Zare, R. N. Probing individual molecules with confocal fluorescence microscopy. Science 226, 1018–1021 (1994).

    Article  Google Scholar 

  4. Sauer, M., Hofkens, J. & Enderlein, J. (eds) Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules (Wiley-VCH, 2009).

    Google Scholar 

  5. Zhang, J., Song, S., Wang, L., Pan, D. & Fan, C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nature Protoc. 2, 2888–2895 (2007).

    Article  CAS  Google Scholar 

  6. Yeh, H.-C., Ho, Y.-P., Shih, I.-M. & Wang, T.-H. Homogeneous point mutation detection by quantum dot-mediated two-color fluorescence coincidence analysis. Nucleic Acids Res. 34, e35/1–e35/8 (2006).

    CAS  Google Scholar 

  7. Wang, P., Murugaiah, V., Yeung, B., Vouros, P. & Giese, R. W. 2-Phosphoglycolate and glycolate-electrophore detection, including detection of 87 zeptomoles of the latter by gas chromatography–electron-capture mass spectrometry. J. Chromatogr. A 721, 289–296 (1996).

    Article  CAS  Google Scholar 

  8. Powell, P. R. & Ewing, A. G. Recent advances in the application of capillary electrophoresis to neuroscience. Anal. Bioanal. Chem. 382, 581–591 (2005).

    Article  CAS  Google Scholar 

  9. Lee, J.-Y., Li, H.-W. & Yeung, E. S. Single-molecule spectroscopy for molecular identification in capillary electrophoresis. J. Chromatogr. A 1053, 173–179 (2004).

    Article  CAS  Google Scholar 

  10. Page, J. S., Rubakhin, S. S. & Sweedler, J. V. Single-neuron analysis using CE combined with MALDI MS and radionuclide detection. Anal. Chem. 74, 497–503 (2002).

    Article  CAS  Google Scholar 

  11. Wirth, T. (ed.) Microreactors in Organic Synthesis and Catalysis (Wiley-VCH, 2008).

    Book  Google Scholar 

  12. Ehrfeld, W., Hessel, V. & Löwe, H. Microreactors: New technology for Modern Chemistry (Wiley-VCH, 2000).

    Book  Google Scholar 

  13. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  14. Tabeling, P. Introduction to Microfluidics (Oxford Univ. Press, 2006).

    Google Scholar 

  15. Nguyen, N.-T. & Wereley, S. T. Fundamentals and Applications of Microfluidics 2nd edn (Artech House, 2006).

    Google Scholar 

  16. Velev, O. D., Prevo, B. G. & Bhatt, K. H. On-chip manipulation of free droplets. Nature 426, 515–516 (2003).

    Article  CAS  Google Scholar 

  17. Burns, M. A. et al. An integrated nanoliter DNA analysis device. Science 282, 484–487 (1998).

    Article  CAS  Google Scholar 

  18. Song, H., Tice, J. D. & Ismagilov, R. F. A microfluidic system for controlling reaction networks in time. Angew. Chem. Int. Ed. 42, 768–772 (2003).

    Article  CAS  Google Scholar 

  19. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  CAS  Google Scholar 

  20. Shestopalov, I., Tice, J. D. & Ismagilov, R. F. Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4, 316–321 (2004).

    Article  CAS  Google Scholar 

  21. Zheng, B., Gerdts, C. J. & Ismagilov, R. F. Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization. Curr. Opin. Struct. Biol. 15, 548–555 (2005).

    Article  CAS  Google Scholar 

  22. Auroux, P.-A., Koc, Y., deMello, A., Manz, A. & Day, P. J. R. Miniaturised nucleic acid analysis. Lab Chip 4, 534–546 (2004).

    Article  CAS  Google Scholar 

  23. Geyer, K., Codee, J. D. C. & Seeberger, P. H. Microreactors as tools for synthetic chemists—the chemists’ round-bottomed flask of the 21st century? Chem. Eur. J. 12, 8434–8442 (2006).

    Article  CAS  Google Scholar 

  24. Zheng, B. & Ismagilov, R. F. A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew. Chem. Int. Ed. 44, 2520–2523 (2005).

    Article  CAS  Google Scholar 

  25. Vriezema, D. M. et al. Self-assembled nanoreactors. Chem. Rev. 105, 1445–1489 (2005).

    Article  CAS  Google Scholar 

  26. Tretyakov, Y. D., Lukashin, A. V. & Eliseev, A. A. Synthesis of functional nanocomposites based on solid-phase nanoreactors. Russ. Chem. Rev. 73, 899–921 (2004).

    Article  CAS  Google Scholar 

  27. Fan, J. et al. Mesoporous silica nanoreactors for highly efficient proteolysis. Chem. Eur. J. 11, 5391–5396 (2005).

    Article  CAS  Google Scholar 

  28. Kim, K. Mechanically interlocked molecules incorporating cucurbituril and their supramolecular assemblies. Chem. Soc. Rev. 31, 96–107 (2002).

    Article  CAS  Google Scholar 

  29. Wulff, G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev. 102, 1–28 (2002).

    Article  CAS  Google Scholar 

  30. Fiedler, D., Leung, D. H., Bergman, R. G. & Raymond, K. N. Selective molecular recognition, C–H bond activation, and catalysis in nanoscale reaction vessels. Acc. Chem. Res. 38, 351–360 (2005).

    Article  Google Scholar 

  31. Mackay, L. G., Wylie, R. S. & Sanders, J. K. M. Catalytic acyl transfer by a cyclic porphyrin trimer: Efficient turnover without product inhibition. J. Am. Chem. Soc. 116, 3141–3142 (1994).

    Article  CAS  Google Scholar 

  32. Breslow, R. & Schmuck, C. Goodness of fit in complexes between substrates and ribonuclease mimics: Effects on binding, catalytic rate constants, and regiochemistry. J. Am. Chem. Soc. 118, 6601–6605 (1996).

    Article  CAS  Google Scholar 

  33. Reneker, D. H. & Chun, I. Nanometer diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216–223 (1996).

    Article  CAS  Google Scholar 

  34. Li, D., Wang, Y. & Xia, Y. Electrospinning nanofibres as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361–366 (2004).

    Article  Google Scholar 

  35. Li, D. & Xia, Y. Electrospinning of nanofibres: Reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004).

    Article  CAS  Google Scholar 

  36. Jang, S.-Y. et al. Welded electrochromic conductive polymer nanofibres by electrostatic spinning. Adv. Mater. 17, 2177–2180 (2005).

    Article  CAS  Google Scholar 

  37. Prodi, L. et al. Dansylated polyamines as fluorescent sensors for metal ions: Photophysical properties and stability of copper(ii) complexes in solution. Helv. Chim. Acta 84, 690–706 (2001).

    Article  CAS  Google Scholar 

  38. Lakowicz J. R. Principles of Fluorescence Spectroscopy 3rd edn (Springer, 2006).

    Book  Google Scholar 

  39. Zollinger, H. Diazo Chemistry I: Aromatic and Heteroaromatic Compounds (VCH, 1994).

    Book  Google Scholar 

  40. Szele, I. & Zollinger, H. Azo coupling reactions: Structures and mechanism. Top. Curr. Chem. 112, 1–66 (1983).

    Article  CAS  Google Scholar 

  41. Kimball, D. B. & Haley, M. M. Triazenes: A versatile tool in organic synthesis. Angew. Chem. Int. Ed. 41, 3338–3351 (2003).

    Article  Google Scholar 

  42. Markley, J. L. NMR analysis goes nano. Nat. Biotechnol. 25, 750–751 (2007).

    Article  CAS  Google Scholar 

  43. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    Article  CAS  Google Scholar 

  44. Lomax, G. R. Breathable polyurethane membranes for textile and related industries. J. Mater. Chem. 17, 2775–2784 (2007).

    Article  CAS  Google Scholar 

  45. Duda, J. L. & Zielinski, J. M. Free-volume theory. Plastics Eng. 32, 143–171 (1996).

    CAS  Google Scholar 

  46. Meares, P. The influence of penetrant concentration on the diffusion and permeation of small molecules in polymers above glass temperature. Eur. Polym. J. 29, 237–243 (1993).

    Article  CAS  Google Scholar 

  47. Wustholz, K. L., Sluss, D. R. B., Kahr, B. & Reid, P. J. Applications of single-molecule microscopy to problems in dyed composite materials. Int. Rev. Phys. Chem. 27, 167–200 (2008).

    Article  CAS  Google Scholar 

  48. Bellan, L. M., Cross, J. D., Strychalski, E. A., Moran-Mirabal, J. & Craighead, H. G. Individually resolved DNA molecules stretched and embedded in electrospun polymer nanofibers. Nano Lett. 6, 2526–2530 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the NSF (CHE No. 0750303, EXP-LA No. 0731153 to P.A.) and Bowling Green State University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

P.A. and M.A.P. contributed equally to this work.

Corresponding author

Correspondence to Pavel Anzenbacher Jr.

Supplementary information

Supplementary information

Supplementary information (PDF 0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anzenbacher, P., Palacios, M. Polymer nanofibre junctions of attolitre volume serve as zeptomole-scale chemical reactors. Nature Chem 1, 80–86 (2009). https://doi.org/10.1038/nchem.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.125

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing