Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cdk1 coordinates cell-surface growth with the cell cycle

Abstract

The mechanisms that control cell growth during the cell cycle are poorly understood. In budding yeast, cyclin dependent kinase 1 (Cdk1) triggers polarization of the actin cytoskeleton and bud emergence in late G1 through activation of the Cdc42 GTPase. However, Cdk1 is not thought to be required for subsequent growth of the bud. Here, we show that Cdk1 has an unexpected role in controlling bud growth after bud emergence. Moreover, we show that G1 cyclin–Cdk1 complexes specifically phosphorylate multiple proteins associated with Cdc24, the guanine nucleotide-exchange factor (GEF) that activates the Cdc42 GTPase. A mutant form of a Cdc24-associated protein that fails to undergo Cdk1-dependent phosphorylation causes defects in bud growth. These results provide a direct link between Cdk1 activity and the control of polarized cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cdk1 activity is essential for bud growth during the cell cycle.
Figure 2: Cdk1 activity is required for the localization of secretory vesicles, motor proteins and the actin cytoskeleton at sites of polarized growth.
Figure 3: Identification of a Cdc24 exchange factor complex.
Figure 4: Cdk1 activity is required for the initial localization and maintenance of Cdc24 complex components at sites of polarized growth.
Figure 5: Cdc24-complex components are Cln2–Cdk1 substrates in vitro.
Figure 6: Boi1 function requires Cln2–Cdk1 phosphorylation.

Similar content being viewed by others

References

  1. Jorgensen, P. & Tyers, M. How cells coordinate growth and division. Curr. Biol. 14, R1014–R1027 (2004).

    Article  CAS  Google Scholar 

  2. Johnston, G. C., Pringle, J. R. & Hartwell, L. H. Coordination of growth with cell division in the yeast Saccharomyces cervisiae. Exp. Cell. Res. 105, 79–98 (1977).

    Article  CAS  Google Scholar 

  3. Kipreos, E. T., Lander, L. E., Wing, J. P., He, W. W. & Hedgecock, E. M. cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family. Cell 85, 829–839 (1996).

    Article  CAS  Google Scholar 

  4. Weigmann, K., Cohen, S. M. & Lehner, C. F. Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. Development 124, 3555–3563 (1997).

    CAS  PubMed  Google Scholar 

  5. Culotti, J. & Hartwell, L. H. Genetic control of the cell division cycle in yeast. 3. Seven genes controlling nuclear division. Exp. Cell Res. 67, 389–401 (1971).

    Article  CAS  Google Scholar 

  6. Cross, F. R. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell Biol. 10, 6482–6490 (1990).

    Article  CAS  Google Scholar 

  7. Lew, D. J. & Reed, S. I. Morphogenesis in the yeast cell cycle: regulation by Cdc28 and cyclins. J. Cell Biol. 120, 1305–1320 (1993).

    Article  CAS  Google Scholar 

  8. Barral, Y., Jentsch, S. & Mann, C. G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9, 399–409 (1995).

    Article  CAS  Google Scholar 

  9. Butty, A. C. et al. A positive feedback loop stabilizes the guanine-nucleotide exchange factor Cdc24 at sites of polarization. EMBO J. 21, 1565–1576 (2002).

    Article  CAS  Google Scholar 

  10. Gulli, M. P. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).

    Article  CAS  Google Scholar 

  11. Moffat, J. & Andrews, B. Late-G1 cyclin–CDK activity is essential for control of cell morphogenesis in budding yeast. Nature Cell Biol. 6, 59–66 (2004).

    Article  CAS  Google Scholar 

  12. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  13. Booher, R. N., Deshaies, R. J. & Kirschner, M. W. Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 12, 3417–3426 (1993).

    Article  CAS  Google Scholar 

  14. McMillan, J. N., Theesfeld, C. L., Harrison, J. C., Bardes, E. S. & Lew, D. J. Determinants of Swe1p degradation in Saccharomyces cerevisiae. Mol. Biol. Cell. 13, 3560–3575 (2002).

    Article  CAS  Google Scholar 

  15. Lanker, S., Valdivieso, M. H. & Wittenberg, C. Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271, 1597–1601 (1996).

    Article  CAS  Google Scholar 

  16. Deshaies, R. J., Chau, V. & Kirschner, M. Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14, 303–312 (1995).

    Article  CAS  Google Scholar 

  17. Schneider, B. L. et al. Yeast G1 cyclins are unstable in G1 phase. Nature 395, 86–89 (1998).

    Article  CAS  Google Scholar 

  18. Willems, A. R. et al. Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86, 453–463 (1996).

    Article  CAS  Google Scholar 

  19. Ubersax, J. A. et al. Targets of the cyclin-dependent kinase Cdk1. Nature 425, 859–864 (2003).

    Article  CAS  Google Scholar 

  20. Hartwell, L. Genetic control of the cell cycle in yeast. Genes controlling bud emergence and cytokinesis. Exp. Cell Res. 69, 265–276 (1971).

    Article  CAS  Google Scholar 

  21. Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y. & Bretscher, A. Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol. 20, 559–591 (2004).

    Article  CAS  Google Scholar 

  22. Valdez-Taubas, J. & Pelham, H. R. Slow diffusion of proteins in the yeast plasma membrane allows polarity to be maintained by endocytic cycling. Curr. Biol. 13, 1636–1640 (2003).

    Article  CAS  Google Scholar 

  23. Finger, F. P., Hughes, T. E. & Novick, P. Sec3p is a spatial landmark for polarized secretion in budding yeast. Cell 92, 559–571 (1998).

    Article  CAS  Google Scholar 

  24. Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F. & Pringle, J. R. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111, 131–142 (1990).

    Article  CAS  Google Scholar 

  25. Adamo, J. E. et al. Yeast Cdc42 functions at a late step in exocytosis, specifically during polarized growth of the emerging bud. J. Cell Biol. 155, 581–592 (2001).

    Article  CAS  Google Scholar 

  26. Zajac, A., Sun, X., Zhang, J. & Guo, W. Cyclical regulation of the exocyst and cell polarity determinants for polarized cell growth. Mol. Biol. Cell 16, 1500–1512 (2005).

    Article  CAS  Google Scholar 

  27. Zhang, X. et al. Cdc42 interacts with the exocyst and regulates polarized secretion. J. Biol. Chem. 276, 46745–46750 (2001).

    Article  CAS  Google Scholar 

  28. Sloat, B. F. & Pringle, J. R. A mutant of yeast defective in cellular morphogenesis. Science 200, 1171–1173 (1978).

    Article  CAS  Google Scholar 

  29. Sloat, B. F., Adams, A. & Pringle, J. R. Roles of the CDC24 gene product in cellular morphogenesis during the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 89, 395–405 (1981).

    Article  CAS  Google Scholar 

  30. Peterson, J. et al. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol. 127, 1395–1406 (1994).

    Article  CAS  Google Scholar 

  31. Bose, I. et al. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J. Biol. Chem. 276, 7176–7186 (2001).

    Article  CAS  Google Scholar 

  32. Smith, G. R., Givan, S. A., Cullen, P. & Sprague, G. F., Jr. GTPase-activating proteins for Cdc42. Eukaryot. Cell 1, 469–480 (2002).

    Article  CAS  Google Scholar 

  33. Norden, C. et al. The NoCut pathway links completion of cytokinesis to spindle midzone function to prevent chromosome breakage. Cell 125, 85–98 (2006).

    Article  CAS  Google Scholar 

  34. Bender, L. et al. Associations among PH and SH3 domain-containing proteins and Rho-type GTPases in yeast. J. Cell Biol. 133, 879–894 (1996).

    Article  CAS  Google Scholar 

  35. Matsui, Y., Matsui, R., Akada, R. & Toh-e, A. Yeast src homology region 3 domain-binding proteins involved in bud formation. J. Cell Biol. 133, 865–878 (1996).

    Article  CAS  Google Scholar 

  36. Ayscough, K. R. et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137, 399–416 (1997).

    Article  CAS  Google Scholar 

  37. Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005).

    Article  CAS  Google Scholar 

  38. Peeper, D. S. et al. A- and B-type cyclins differentially modulate substrate specificity ofcyclin-cdk complexes. EMBO J. 12, 1947–1954 (1993).

    Article  CAS  Google Scholar 

  39. Archambault, V. et al. Targeted proteomic study of the cyclin-Cdk module. Mol. Cell 14, 699–711 (2004).

    Article  CAS  Google Scholar 

  40. Harvey, S. L., Charlet, A., Haas, W., Gygi, S. P. & Kellogg, D. R. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 122, 407–420 (2005).

    Article  CAS  Google Scholar 

  41. Mimura, S., Seki, T., Tanaka, S. & Diffley, J. F. Phosphorylation-dependent binding of mitotic cyclins to Cdc6 contributes to DNA replication control. Nature 431, 1118–1123 (2004).

    Article  CAS  Google Scholar 

  42. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).

    Article  CAS  Google Scholar 

  43. Mortensen, E. M., McDonald, H., Yates, J., 3rd & Kellogg, D. R. Cell cycle-dependent assembly of a Gin4-septin complex. Mol. Biol. Cell 13, 2091–2105 (2002).

    Article  CAS  Google Scholar 

  44. Kellogg, D. R. & Alberts, B. M. Purification of a multiprotein complex containing centrosomal proteins from the Drosophila embryo by chromatography with low-affinity polyclonal antibodies. Mol. Biol. Cell 3, 1–11 (1992).

    Article  CAS  Google Scholar 

  45. Adamo, J. E., Rossi, G. & Brennwald, P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol. Biol. Cell 10, 4121–4133 (1999).

    Article  CAS  Google Scholar 

  46. Washburn, M. P., Wolters, D. & Yates, J. R., 3rd. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol 19, 242–247 (2001).

    Article  CAS  Google Scholar 

  47. Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5, 976–989 (1994).

    Article  CAS  Google Scholar 

  48. Sadygov, R. G. et al. Code developments to improve the efficiency of automated MS/MS spectra interpretation. J. Proteome Res. 1, 211–215 (2002).

    Article  CAS  Google Scholar 

  49. Gygi, M. P., Licklider, L. J., Peng, J. & Gygi, S. P. Proteins and Proteomics: A Laboratory Manual (Cold Spring Harbor, NY, 2004).

    Google Scholar 

  50. Beausoleil, S. A., Villen, J., Gerber, S. A., Rush, J. & Gygi, S. P. Nature Biotechnol 24, 1285–1292 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Krupp at UCSC for his expert technical assistance with electron microscopy and for sectioning samples; C. Zhang and K. Shokat for providing 1NM–PP1; R. Arkowitz for the GFP–Cdc42 strain, tagging plasmids and helpful suggestions, A. Bender for Boi1 antiserum, D. Morgan for the cdk1-as strain and R. Deschaies for the Cln2–HA plasmid; B. Sullivan, A. Royou, S. Harvey and all Kellogg lab members for comments and insightful discussion. This work was supported by a grant from the National Institutes of Health, grant number GM53959.

Author information

Authors and Affiliations

Authors

Contributions

D.M. and D.K. designed the experiments. Mass spectrometry was carried out by S.A., J.Y., C.D. and S.G. All other experiments were carried out by D.M., with technical assistance from T.E. for a cell-cycle time-course experiment and help from D.K. in CDK activity normalization. D.M. and D.K. analysed the data and wrote the paper.

Corresponding author

Correspondence to Douglas R. Kellogg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6, Supplementary tables S1 and S2 (PDF 1693 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCusker, D., Denison, C., Anderson, S. et al. Cdk1 coordinates cell-surface growth with the cell cycle. Nat Cell Biol 9, 506–515 (2007). https://doi.org/10.1038/ncb1568

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1568

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing