Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging

Abstract

Bipolarity of the meiotic spindle, required for proper chromosome segregation, is maintained throughout cell division despite rapid microtubule turnover. How this is achieved has remained mysterious, as determining the organization of individual spindle microtubules has been difficult. Here, we develop single-fluorophore speckle imaging to examine microtubule organization in the vertebrate meiotic spindle. We find that the mean length of microtubules is 40% of spindle length. Long and short filaments distribute randomly throughout the spindle and those in close proximity can move in the same direction with highly heterogeneous velocities. The ratio between microtubule and spindle lengths remains unchanged as spindles elongate upon dynein–dynactin inhibition. However, maintaining this ratio depends on proper kinesin-5 function. Our data suggest that force transmission within the spindle must be understood in terms of the crosslinking dynamics of a tiled array of individual filaments, most of which do not span the distance from the pole to the metaphase plate.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Development and validation of single-fluorophore imaging of tubulin in metaphase spindles assembled in Xenopus laevis egg extracts.
Figure 2: Analysis of differential movement of individual microtubules within bundles.
Figure 3: Inference of microtubule-length distributions in control spindles from synchronously moving single-fluorophore speckle pairs.
Figure 4: Spatial distribution of short microtubules.
Figure 5: Hexylene glycol treatment increases spindle size and microtubule length.
Figure 6: Reduced velocity heterogeneity and increased length of microtubule in spindles treated with different doses of dynein–dynactin inhibitor p150-CC1.
Figure 7: Inhibition of kinesin-5, together with dynein–dynactin, disrupts the proportional scaling of microtubule length relative to spindle size.

Similar content being viewed by others

References

  1. Hassold, T. & Hunt, P. To err (meiotically) is human: the genesis of human aneuploidy. Nature Rev. Genet. 2, 280–291 (2001).

    Article  CAS  Google Scholar 

  2. Mitchison, T. J. & Salmon, E. D. Mitosis: a history of division. Nature Cell Biol. 3, E17–E21 (2001).

    Article  CAS  Google Scholar 

  3. McDonald, K. L., O'Toole, E. T., Mastronarde, D. N. & McIntosh, J. R. Kinetochore microtubules in PtK cells. J. Cell Biol. 118, 369–383 (1992).

    Article  CAS  Google Scholar 

  4. Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. Interpolar spindle microtubules in PtK cells. J. Cell Biol. 123, 1475–1489 (1993).

    Article  CAS  Google Scholar 

  5. Hayden, J. H., Bowser, S. S. & Rieder, C. L. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells. J. Cell Biol. 111, 1039–1045 (1990).

    Article  CAS  Google Scholar 

  6. Verde, F., Dogterom, M., Stelzer, E., Karsenti, E. & Leibler, S. Control of microtubule dynamics and length by Cyclin A-dependent and Cyclin B-dependent kinases in Xenopus egg extracts. J. Cell Biol. 118, 1097–1108 (1992).

    Article  CAS  Google Scholar 

  7. Brown, K. S. et al. Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J. Cell Biol. 176, 765–770 (2007).

    Article  CAS  Google Scholar 

  8. Vallotton, P., Ponti, A., Waterman-Storer, C. M., Salmon, E. D. & Danuser, G. Recovery, visualization, and analysis of actin and tubulin polymer flow in live cells: a fluorescence speckle microscopy study. Biophys. J. 85, 1289–1306 (2003).

    Article  CAS  Google Scholar 

  9. Gaetz, J. & Kapoor, T. M. Dynein/dynactin regulate metaphase spindle length by targeting depolymerizing activities to spindle poles. J. Cell Biol. 166, 465–471 (2004).

    Article  CAS  Google Scholar 

  10. Miyamoto, D. T., Perlman, Z. E., Burbank, K. S., Groen, A. C. & Mitchison, T. J. The kinesin Eg5 drives poleward microtubule flux in Xenopus laevis egg extract spindles. J. Cell Biol. 167, 813–818 (2004).

    Article  CAS  Google Scholar 

  11. Cameron, L. A. et al. Kinesin 5-independent poleward flux of kinetochore microtubules in PtK1 cells. J. Cell Biol. 173, 173–179 (2006).

    Article  CAS  Google Scholar 

  12. Maddox, P., Straight, A., Coughlin, P., Mitchison, T. J. & Salmon, E. D. Direct observation of microtubule dynamics at kinetochores in Xenopus extract spindles: implications for spindle mechanics. J. Cell Biol. 162, 377–382 (2003).

    Article  CAS  Google Scholar 

  13. Burbank, K. S., Groen, A. C., Perlman, Z. E., Fisher, D. D. & Mitchison, T. J. A new method reveals microtubule minus ends throughout the meiotic spindle. J. Cell Biol. 175, 369–375 (2006).

    Article  CAS  Google Scholar 

  14. Danuser, G. & Waterman-Storer, C. M. Quantitative fluorescent speckle microscopy of cytoskeleton dynamics. Ann. Rev. Biophys. Biomol. Struct. 35, 361–387 (2006).

    Article  CAS  Google Scholar 

  15. Mitchison, T. J. et al. Bipolarization and poleward flux correlate during Xenopus extract spindle assembly. Mol. Biol. Cell 15, 5603–5615 (2004).

    Article  CAS  Google Scholar 

  16. Desai, A., Murray, A., Mitchison, T. J. & Walczak, C. The use of Xenopus egg extracts to study mitotic spindle assembly and function in vitro. Methods Cell Biol. 61, 385–412 (1999).

    Article  CAS  Google Scholar 

  17. Yang, G., Matov, A. & Danuser, G. Reliable tracking of large-scale dense particle motion for fluorescent live cell imaging. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition 3, 138 (2005).

    Google Scholar 

  18. Maly, I. V. Diffusion approximation of the stochastic process of microtubule assembly. Bull. Math. Biol. 64, 213–238 (2002).

    Article  CAS  Google Scholar 

  19. Hill, T. Linear Aggregation Theory in Cell Biology (Springer, New York, 1987).

    Book  Google Scholar 

  20. Gliksman, N. R., Skibbens, R. V. & Salmon, E. D. How the transition frequencies of microtubule dynamic instability (nucleation, catastrophe, and rescue) regulate microtubule dynamics in interphase and mitosis — analysis using a Monte-Carlo computer-simulation. Mol. Biol. Cell 4, 1035–1050 (1993).

    Article  CAS  Google Scholar 

  21. Barr, D. R. & Sherrill, E. T. Mean and variance of truncated normal distribution. Am. Stat. 53, 357–361 (1999).

    Google Scholar 

  22. Hallett, F. R. & Keates, R. Rapid estimation of length distribution of microtubule preparations by quasi-elastic light scattering. Biopolymers 24, 2403–2415 (1985).

    Article  CAS  Google Scholar 

  23. Wadsworth, P. & Khodjakov, A. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell. Biol. 14, 413–419 (2004).

    Article  CAS  Google Scholar 

  24. Mitchison, T. J. et al. Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol. Biol. Cell 16, 3064–3076 (2005).

    Article  CAS  Google Scholar 

  25. Wittman, T. & Hyman, A. Recombinant p50/dynamitin as a tool to examine the role of dynactin in intracellular processes. Methods Cell Biol. 61, 137–143 (1999).

    Article  Google Scholar 

  26. Kapitein, L. C. et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature 435, 114–118 (2005).

    Article  CAS  Google Scholar 

  27. Nedelec, F. Computer simulations reveal motor properties generating stable antiparallel microtubule interactions. J. Cell Biol. 158, 1005–1015 (2002).

    Article  CAS  Google Scholar 

  28. Ohi, R., Burbank, K., Liu, C. & Mitchison, T. J. Nonredundant functions of kinesin-13s during meiotic spindle assembly. Curr. Biol. 17, 953–959 (2007).

    Article  CAS  Google Scholar 

  29. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  30. Ohba, S., Kamata, K. & Miki-Noumura, T. Stabilization of microtubules by dynein-binding in vitro. Stability of microtubule–dynein complex. Biochem. Biophys. Acta 1158, 323–332 (1993).

    Article  CAS  Google Scholar 

  31. Ponti, A., Machacek, M., Gupton, S. L., Waterman-Storer, C. M. & Danuser, G. Two distinct actin networks drive the protrusion of migrating cells. Science 305, 1782–1786 (2004).

    Article  CAS  Google Scholar 

  32. Ponti, A., Vallotton, P., Salmon, W. C., Waterman-Storer, C. M. & Danuser, G. Computational analysis of f-actin turnover in cortical actin meshworks using fluorescent speckle microscopy. Biophys. J. 84, 3336–3352 (2003).

    Article  CAS  Google Scholar 

  33. Hyman, A. et al. Preparation of modified tubulins. Methods Enzymol. 196, 478–485 (1991).

    Article  CAS  Google Scholar 

  34. Fraley, C. & Raftery, A. E. Model-based clustering, discriminant analysis and density estimation. J. American Statistical Association 97, 611–631 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

Funding is acknowledged as follows: Burroughs-Wellcome La Jolla Interfaces in Science fellowship (G.Y.), National Institutes of Health (NIH) National Research Service Award postdoctoral fellowship GM078852 (B.R.H.), NIH R01 GM60678 (G.D.) and NIH R01 GM65933 (T.M.K.) and Howard Hughes Medical Institute Predoctoral Fellowship (J.G.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaudenz Danuser or Tarun M. Kapoor.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6 and S7, Supplementary Movie Legends S1, S2, S3, S4, S5 and S6, Supplementary Tables S1 and S2 and Supplementary Methods (PDF 2463 kb)

Supplementary Movie S1 (MOV 1981 kb)

Supplementary Movie S2 (MOV 1258 kb)

Supplementary Movie S3 (MOV 3086 kb)

Supplementary Movie S4 (MOV 3179 kb)

Supplementary Movie S5 (MOV 1291 kb)

Supplementary Movie S6 (MOV 2662 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G., Houghtaling, B., Gaetz, J. et al. Architectural dynamics of the meiotic spindle revealed by single-fluorophore imaging. Nat Cell Biol 9, 1233–1242 (2007). https://doi.org/10.1038/ncb1643

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1643

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing