Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation

A Retraction to this article was published on 31 October 2014

A Corrigendum to this article was published on 30 November 2012

This article has been updated

Abstract

Histone modifications induced by activated signalling cascades are crucial to cell-lineage decisions. Osteoblast and adipocyte differentiation from common mesenchymal stem cells is under transcriptional control by numerous factors. Although PPAR-γ (peroxisome proliferator activated receptor-γ) has been established as a prime inducer of adipogenesis, cellular signalling factors that determine cell lineage in bone marrow remain generally unknown. Here, we show that the non-canonical Wnt pathway through CaMKII–TAK1–TAB2–NLK transcriptionally represses PPAR-γ transactivation and induces Runx2 expression, promoting osteoblastogenesis in preference to adipogenesis in bone marrow mesenchymal progenitors. Wnt-5a activates NLK (Nemo-like kinase), which in turn phosphorylates a histone methyltransferase, SETDB1 (SET domain bifurcated 1), leading to the formation of a co-repressor complex that inactivates PPAR-γ function through histone H3-K9 methylation. These findings suggest that the non-canonical Wnt signalling pathway suppresses PPAR-γ function through chromatin inactivation triggered by recruitment of a repressing histone methyltransferase, thus leading to an osteoblastic cell lineage from mesenchymal stem cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Wnt-5a signalling suppresses the transactivation function of PPAR-γ through CaMKII−TAK1−TAB2−NLK.
Figure 2: Wnt-5a inhibits adipogenesis and induces osteoblastogenesis in bone marrow mesenchymal stem cells.
Figure 3: Bone analysis of distal femora of 18-weeks-old WT, Wnt-5a+/−, Wnt-3a+/− and PPAR-γ+/− male mice.
Figure 4: SETDB1 and CHD7 form a complex with PPAR-γ and NLK in a Wnt-5a-dependent manner.
Figure 5: Phosphorylated SETDB1 forms a complex with CHD7–NLK–PPAR-γ.
Figure 6: Wnt-5a-dependent recruitment of NLK containing corepressor complex.
Figure 7: NLK, SETDB1 and CHD7 RNAi abrogated Wnt-5a-dependent differentiation and recruitment of modified H3.

Similar content being viewed by others

Change history

  • 30 November 2012

    Nat. Cell Biol. 9, 1273–1285 (2007); published online 21st October 2007 In the version of this Article initially published, Figs 6a and 6c contained panels that were inadvertently duplicated. In Fig. 6a, the panels in the right-hand column (Distal) corresponding to αSETDB1, αCHD7 and αNLK were duplicated.

References

  1. Fischle, W., Wang, Y. & Allis, C. D. Histone and chromatin cross-talk. Curr. Opin. Cell Biol. 15, 172–183 (2003).

    Article  CAS  Google Scholar 

  2. Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005).

    Article  CAS  Google Scholar 

  3. Martin, C. & Zhang, Y. The diverse functions of histone lysine methylation. Nature Rev. Mol. Cell Biol. 6, 838–849 (2005).

    Article  CAS  Google Scholar 

  4. Bannister, A. J. & Kouzarides, T. Reversing histone methylation. Nature 436, 1103–1106 (2005).

    Article  CAS  Google Scholar 

  5. Metzger, E., Wissmann, M. & Schule, R. Histone demethylation and androgen-dependent transcription. Curr. Opin. Genet. Dev. 16, 513–517 (2006).

    Article  CAS  Google Scholar 

  6. Wu, R. C., Smith, C. L. & O'Malley, B. W. Transcriptional regulation by steroid receptor coactivator phosphorylation. Endocr. Rev. 26, 393–399 (2005).

    Article  CAS  Google Scholar 

  7. Dilworth, F. J. & Chambon, P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene 20, 3047–3054 (2001).

    Article  CAS  Google Scholar 

  8. Rosenfeld, M. G., Lunyak, V. V. & Glass, C. K. Sensors and signals: a coactivator/corepressor/epigenetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 20, 1405–1428 (2006).

    Article  CAS  Google Scholar 

  9. Pascual, G. et al. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 437, 759–763 (2005).

    Article  CAS  Google Scholar 

  10. Evans, R. M., Barish, G. D. & Wang, Y. X. PPARs and the complex journey to obesity. Nature Med. 10, 355–361 (2004).

    Article  CAS  Google Scholar 

  11. Feige, J. N., Gelman, L., Michalik, L., Desvergne, B. & Wahli, W. From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog. Lipid Res. 45, 120–159 (2006).

    Article  CAS  Google Scholar 

  12. Lehrke, M. & Lazar, M. A. The many faces of PPARgamma. Cell 123, 993–999 (2005).

    Article  CAS  Google Scholar 

  13. Tontonoz, P., Hu, E., Graves, R. A., Budavari, A. I. & Spiegelman, B. M. mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234 (1994).

    Article  CAS  Google Scholar 

  14. Hu, E., Kim, J. B., Sarraf, P. & Spiegelman, B. M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARgamma. Science 274, 2100–2103 (1996).

    Article  CAS  Google Scholar 

  15. Suzawa, M. et al. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nature Cell Biol. 5, 224–230 (2003).

    Article  CAS  Google Scholar 

  16. Chien, K. R. & Karsenty, G. Longevity and lineages: toward the integrative biology of degenerative diseases in heart, muscle, and bone. Cell 120, 533–544 (2005).

    Article  CAS  Google Scholar 

  17. Harada, S. & Rodan, G. A. Control of osteoblast function and regulation of bone mass. Nature 423, 349–355 (2003).

    Article  CAS  Google Scholar 

  18. Ralston, S. H. & de Crombrugghe, B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev. 20, 2492–2506 (2006).

    Article  CAS  Google Scholar 

  19. Behrens, J. et al. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642 (1996).

    Article  CAS  Google Scholar 

  20. Ishitani, T. et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Mol. Cell. Biol. 23, 131–139 (2003).

    Article  CAS  Google Scholar 

  21. Veeman, M. T., Axelrod, J. D. & Moon, R. T. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev. Cell 5, 367–377 (2003).

    Article  CAS  Google Scholar 

  22. Schultz, D. C., Ayyanathan, K., Negorev, D., Maul, G. G. & Rauscher, F. J. 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    Article  CAS  Google Scholar 

  23. Wang, H. et al. mAM facilitates conversion by ESET of dimethyl to trimethyl lysine 9 of histone H3 to cause transcriptional repression. Mol. Cell 12, 475–487 (2003).

    Article  CAS  Google Scholar 

  24. Vissers, L. E. et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nature Genet. 36, 955–957 (2004).

    Article  CAS  Google Scholar 

  25. Komatsu, Y. et al. Targeted disruption of the Tab1 gene causes embryonic lethality and defects in cardiovascular and lung morphogenesis. Mech. Dev. 119, 239–249 (2002).

    Article  CAS  Google Scholar 

  26. Ishitani, T. et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399, 798–802 (1999).

    Article  CAS  Google Scholar 

  27. Almind, K. & Kahn, C. R. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53, 3274–3285 (2004).

    Article  CAS  Google Scholar 

  28. Mueller, E. et al. Terminal differentiation of human breast cancer through PPAR gamma. Mol. Cell 1, 465–470 (1998).

    Article  CAS  Google Scholar 

  29. Hong, J. H. et al. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309, 1074–1078 (2005).

    Article  CAS  Google Scholar 

  30. Schwartz, A. V. et al. Thiazolidinedione use and bone loss in older diabetic adults. J. Clin. Endocrinol. Metab. 91, 3349–3354 (2006).

    Article  CAS  Google Scholar 

  31. Akune, T. et al. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J. Clin. Invest. 113, 846–855 (2004).

    Article  CAS  Google Scholar 

  32. Takada, S. et al. Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes Dev. 8, 174–189 (1994).

    Article  CAS  Google Scholar 

  33. Glass, D. A. 2nd et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev. Cell 8, 751–764 (2005).

    Article  CAS  Google Scholar 

  34. Gong, Y. et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523 (2001).

    Article  CAS  Google Scholar 

  35. Ross, S. E. et al. Inhibition of adipogenesis by Wnt signaling. Science 289, 950–953 (2000).

    Article  CAS  Google Scholar 

  36. Yamaguchi, T. P., Bradley, A., McMahon, A. P. & Jones, S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999).

    CAS  PubMed  Google Scholar 

  37. Kitagawa, H. et al. The chromatin-remodeling complex WINAC targets a nuclear receptor to promoters and is impaired in Williams syndrome. Cell 113, 905–917 (2003).

    Article  CAS  Google Scholar 

  38. Yanagisawa, J. et al. Nuclear receptor function requires a TFTC-type histone acetyl transferase complex. Mol. Cell 9, 553–562 (2002).

    Article  CAS  Google Scholar 

  39. Brehm, A., Tufteland, K. R., Aasland, R. & Becker, P. B. The many colours of chromodomains. Bioessays 26, 133–140 (2004).

    Article  CAS  Google Scholar 

  40. Botrugno, O. A. et al. Synergy between LRH-1 and beta-catenin induces G1 cyclin-mediated cell proliferation. Mol. Cell 15, 499–509 (2004).

    Article  CAS  Google Scholar 

  41. Kouzmenko, A. P. et al. Wnt/beta-catenin and estrogen signaling converge in vivo. J. Biol. Chem. 279, 40255–40258 (2004).

    Article  CAS  Google Scholar 

  42. Asahina, M., Valenta, T., Silhankova, M., Korinek, V. & Jindra, M. Crosstalk between a nuclear receptor and beta-catenin signaling decides cell fates in the C. elegans somatic gonad. Dev. Cell 11, 203–211 (2006).

    Article  CAS  Google Scholar 

  43. Zhu, P. et al. Macrophage/cancer cell interactions mediate hormone resistance by a nuclear receptor derepression pathway. Cell 124, 615–629 (2006).

    Article  CAS  Google Scholar 

  44. Garcia-Bassets, I. et al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors. Cell 128, 505–518 (2007).

    Article  CAS  Google Scholar 

  45. Wang, J. et al. Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 446, 882–887 (2007).

    Article  CAS  Google Scholar 

  46. Kurahashi, T., Nomura, T., Kanei-Ishii, C., Shinkai, Y. & Ishii, S. The Wnt-NLK signaling pathway inhibits A-Myb activity by inhibiting the association with coactivator CBP and methylating histone H3. Mol. Biol. Cell 16, 4705–4713 (2005).

    Article  CAS  Google Scholar 

  47. Kubota, N. et al. PPAR gamma mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597–609 (1999).

    Article  CAS  Google Scholar 

  48. Ohtake, F. et al. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor. Nature 423, 545–550 (2003).

    Article  CAS  Google Scholar 

  49. Fujiwara, M. et al. Isolation and characterization of the distal promoter region of mouse Cbfa1. Biochim. Biophys. Acta 1446, 265–272 (1999).

    Article  CAS  Google Scholar 

  50. Fujiki, R. et al. Ligand-induced transrepression by VDR through association of WSTF with acetylated histones. EMBO J. 24, 3881–3894 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. P. Kouzmenko, M. Kim and R. Fujiki for helpful discussions and H. Higuchi and S. Fujiyama for manuscript preparation. And we also thank S. Ishii (RIKEN Tsukuba Institute) for helpful advice and T. Komori (Nagasaki University) for the kind gift of the Runx2 expression vector and reporter vector. This work was supported, in part, by a Grant-In-Aid for Basic Research Activities for Innovative Biosciences (BRAIN) and Priority Areas from the Ministry of Education, Science, Sports, and Culture of Japan (to S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Kato.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3, S4, S5, S6 and Materials (PDF 1365 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takada, I., Mihara, M., Suzawa, M. et al. A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-γ transactivation. Nat Cell Biol 9, 1273–1285 (2007). https://doi.org/10.1038/ncb1647

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1647

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing