Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis

Abstract

Morphogens are secreted signalling molecules that govern many developmental processes1. In the Drosophila wing disc, the transforming growth factor β (TGFβ) homologue Decapentaplegic (Dpp) forms a smooth gradient and specifies cell fate by conferring a defined value of morphogen activity. Thus, neighbouring cells have similar amounts of Dpp protein, and if a sharp discontinuity in Dpp activity is generated between these cells, Jun kinase (JNK)-dependent apoptosis is triggered to restore graded positional information2,3. To date, it has been assumed that this apoptotic process is only activated when normal signalling is distorted. However, we now show that a similar process occurs during normal development: rupture in Dpp activity occurs during normal segmentation of the distal legs of Drosophila. This sharp boundary of Dpp signalling, independently of the absolute level of Dpp activity, induces a JNK—reaper-dependent apoptosis required for the morphogenesis of a particular structure of the leg, the joint. Our results show that Dpp could induce a developmental programme not only in a concentration dependent manner, but also by the creation of a sharp boundary of Dpp activity. Furthermore, the same process could be used either to restore a normal pattern in response to artificial disturbance or to direct a morphogenetic process.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Programmed cell death occurs at the presumptive joints.
Figure 2: Distal joint morphogenesis requires apoptosis.
Figure 3: Dpp, P-Mad and rprlacZ expression patterns in third instar and prepupal leg discs.
Figure 4: Apoptosis induction and joint formation require a sharp boundary of Dpp signalling.
Figure 5: Schematic representation of a model of joint formation in distal leg segments.

Similar content being viewed by others

References

  1. Teleman, A. A., Strigini, M. & Cohen, S. M. Shaping morphogen gradients. Cell 105, 559–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Adachi-Yamada, T., Fujimura-Kamada, K., Nishida, Y. & Matsumoto, K. Distortion of proximodistal information causes JNK-dependent apoptosis in Drosophila wing. Nature 400, 166–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Adachi-Yamada, T. & O'Connor, M. B. Morphogenetic apoptosis: a mechanism for correcting discontinuities in morphogen gradients. Dev. Biol 251, 74–90 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Rauskolb, C. The establishment of segmentation in the Drosophila leg. Development 128, 4511–4521 (2001).

    CAS  PubMed  Google Scholar 

  5. Jiang, C., Lamblin, A. F., Steller, H. & Thummel, C. S. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol. Cell 5, 445–455 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Cashio, P., Lee, T. V. & Bergmann, A. Genetic control of programmed cell death in Drosophila melanogaster. Semin. Cell Dev. Biol. 16, 225–235 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Hay, B. A., Wolff, T. & Rubin, G. M. Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121–2129 (1994).

    CAS  PubMed  Google Scholar 

  8. Brand, A. H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  9. White, K. et al. Genetic control of programmed cell death in Drosophila. Science 264, 677–683 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Martin-Blanco, E. et al. puckered encodes a phosphatase that mediates a feedback loop regulating JNK activity during dorsal closure in Drosophila. Genes Dev. 12, 557–570 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jockusch, E. L., Nulsen, C., Newfeld, S. J. & Nagy, L. M. Leg development in flies versus grasshoppers: differences in dpp expression do not lead to differences in the expression of downstream components of the leg patterning pathway. Development 127, 1617–1626 (2000).

    CAS  PubMed  Google Scholar 

  12. Niwa, N. et al. Correlation of diversity of leg morphology in Gryllus bimaculatus (cricket) with divergence in dpp expression pattern during leg development. Development 127, 4373–4781 (2000).

    CAS  PubMed  Google Scholar 

  13. Edwards, C. J. & Francis-West, P. H. Bone morphogenetic proteins in the development and healing of synovial joints. Semin. Arthritis Rheum. 31, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Tanimoto, H., Itoh, S., ten Dijke, P. & Tabata, T. Hedgehog creates a gradient of DPP activity in Drosophila wing imaginal discs. Mol. Cell 5, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Entchev, E. V., Schwabedissen, A. & Gonzalez-Gaitan, M. Gradient formation of the TGF-β homolog Dpp. Cell 103, 981–991 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Teleman, A. A. & Cohen, S. M. Dpp gradient formation in the Drosophila wing imaginal disc. Cell 103, 971–980 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Belenkaya, T. Y. et al. Drosophila Dpp morphogen movement is independent of dynamin-mediated endocytosis but regulated by the glypican members of heparan sulfate proteoglycans. Cell 119, 231–244 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Haerry, T. E., Khalsa, O., O'Connor, M. B. & Wharton, K. A. Synergistic signaling by two BMP ligands through the SAX and TKV receptors controls wing growth and patterning in Drosophila. Development 125, 3977–3987 (1998).

    CAS  PubMed  Google Scholar 

  19. Nellen, D., Burke, R., Struhl, G. & Basler, K. Direct and long-range action of a DPP morphogen gradient. Cell 85, 357–368 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Bishop, S. A., Klein, T., Arias, A. M. & Couso, J. P. Composite signalling from Serrate and Delta establishes leg segments in Drosophila through Notch. Development 126, 2993–3003 (1999).

    CAS  PubMed  Google Scholar 

  21. de Celis, J. F., Tyler, D. M., de Celis, J. & Bray, S. J. Notch signalling mediates segmentation of the Drosophila leg. Development 125, 4617–4626 (1998).

    CAS  PubMed  Google Scholar 

  22. Rauskolb, C. & Irvine, K. D. Notch-mediated segmentation and growth control of the Drosophila leg. Dev Biol 210, 339–350 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Casares, F. & Mann, R. S. The ground state of the ventral appendage in Drosophila. Science 293, 1477–1480 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Shubin, N., Tabin, C. & Carroll, S. Fossils, genes and the evolution of animal limbs. Nature 388, 639–648 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Drysdale, R. A. & Crosby, M. A. FlyBase: genes and gene models. Nucleic Acids Res. 33, D390–D395 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Nellesen, D. T., Lai, E. C. & Posakony, J. W. Discrete enhancer elements mediate selective responsiveness of enhancer of split complex genes to common transcriptional activators. Dev. Biol. 213, 33–53 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Hayashi, S. et al. GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34, 58–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Perez-Garijo, A., Martin, F. A. & Morata, G. Caspase inhibition during apoptosis causes abnormal signalling and developmental aberrations in Drosophila. Development 131, 5591–5598 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Yu, S. Y. et al. A pathway of signals regulating effector and initiator caspases in the developing Drosophila eye. Development 129, 3269–3278 (2002).

    CAS  PubMed  Google Scholar 

  30. Azpiazu, N. & Frasch, M. tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 7, 1325–1340 (1993).

    Article  CAS  PubMed  Google Scholar 

  31. Campbell, G. Distalization of the Drosophila leg by graded EGF-receptor activity. Nature 418, 781–785 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Galindo, M. I., Bishop, S. A., Greig, S. & Couso, J. P. Leg patterning driven by proximal-distal interactions and EGFR signaling. Science 297, 256–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. McGuire, S. E., Le, P. T., Osborn, A. J., Matsumoto, K. & Davis, R. L. Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302, 1765–1768 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank: G. Morata for his help, support and comments on the manuscript; J. F. de Celis, S. Noselli and M. Lemonnier for their comments on the manuscript; K. Basler, S. Baumgartner, J. F. De Celis, A. Macías, G. Morata, S. Noselli, T. Tabata, C. S. Thummel and the Bloomington Stock Center for stocks and reagents; N. Azpiazu, J. Casanova and M. Milán for providing space and laboratory facilities; S. Aldaz for pointing out the reaper expression in the leg discs; H. Herranz for providing the dpp probe; F. A. Martín for discussions; and R. González and the personnel of the electronic microscopy facility at the CBMSO for technical assistance. This work has been supported by grants from the Dirección General de Investigación Científica y Técnica (BMC 2002-00300), the Comunidad Autónoma de Madrid (08.1/0031/2001.1 and GR/SAL/0147/2004) and an Institutional Grant from the Fundación Ramón Areces. C.M. is a recipient of a Formación del Personal Universitario (F.P.U.) fellowship from the Ministerio de Educación y Ciencia.

Author information

Authors and Affiliations

Authors

Contributions

C.M. carried out experimental work, E.S. designed experiments and wrote the manuscript and M.S. carried out experimental research, designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Magali Suzanne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2, S3 and Supplementary table S1 (PDF 544 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjón, C., Sánchez-Herrero, E. & Suzanne, M. Sharp boundaries of Dpp signalling trigger local cell death required for Drosophila leg morphogenesis. Nat Cell Biol 9, 57–63 (2007). https://doi.org/10.1038/ncb1518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1518

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing