Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts

Abstract

Asymmetric cell division generates cell diversity during development1,2 and regulates stem-cell self-renewal in Drosophila and mammals3,4. In Drosophila, neuroblasts align their spindle with a cortical Partner of Inscuteable (Pins)–Gαi crescent to divide asymmetrically, but the link between cortical polarity and the mitotic spindle is poorly understood. Here, we show that Pins directly binds, and coimmunoprecipitates with, the NuMA-related Mushroom body defect (Mud) protein. Pins recruits Mud to the neuroblast apical cortex, and Mud is also strongly localized to centrosome/spindle poles, in a similar way to NuMA. In mud mutants, cortical polarity is normal, but the metaphase spindle frequently fails to align with the cortical polarity axis. When spindle orientation is orthogonal to cell polarity, symmetric division occurs. We propose that Mud is a functional orthologue of mammalian NuMA and Caenorhabditis elegans Lin-5, and that Mud coordinates spindle orientation with cortical polarity to promote asymmetric cell division.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drosophila Mud protein domains and interaction with Pins.
Figure 2: Mud is localized to the cortex, spindle poles and spindle microtubules.
Figure 3: Pins recruits Mud to the neuroblast apical cortex.
Figure 4: Mud is required for spindle orientation in metaphase neuroblasts.
Figure 5: Mud aligns the centrosome/spindle poles with cortical polarity.

Similar content being viewed by others

References

  1. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004).

    Article  CAS  Google Scholar 

  2. Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell. Dev. Biol. 20, 427–453 (2004).

    Article  CAS  Google Scholar 

  3. Lee, C. Y., Robinson, K. J. & Doe, C. Q. Lgl, Pins and aPKC regulate neuroblast self-renewal versus differentiation. Nature 439, 594–598 (2006).

    Article  CAS  Google Scholar 

  4. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  Google Scholar 

  5. Siegrist, S. E. & Doe, C. Q. Microtubule-induced pins/gαi cortical polarity in Drosophila neuroblasts. Cell 123, 1323–1335 (2005).

    Article  CAS  Google Scholar 

  6. Du, Q., Stukenberg, P. T. & Macara, I. G. A mammalian Partner of inscuteable binds NuMA and regulates mitotic spindle organization. Nature Cell Biol. 3, 1069–1075 (2001).

    Article  CAS  Google Scholar 

  7. Du, Q., Taylor, L., Compton, D. A. & Macara, I. G. LGN blocks the ability of NuMA to bind and stabilize microtubules. A mechanism for mitotic spindle assembly regulation. Curr. Biol. 12, 1928–1933 (2002).

    Article  CAS  Google Scholar 

  8. Gotta, M., Dong, Y., Peterson, Y. K., Lanier, S. M. & Ahringer, J. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr. Biol. 13, 1029–1037 (2003).

    Article  CAS  Google Scholar 

  9. Srinivasan, D. G., Fisk, R. M., Xu, H. & van den Heuvel, S. A complex of LIN-5 and GPR proteins regulates G protein signaling and spindle function in C. elegans. Genes Dev. 17, 1225–1239 (2003).

    Article  CAS  Google Scholar 

  10. Haren, L. & Merdes, A. Direct binding of NuMA to tubulin is mediated by a novel sequence motif in the tail domain that bundles and stabilizes microtubules. J. Cell Sci. 115, 1815–1824 (2002).

    CAS  PubMed  Google Scholar 

  11. Schaefer, M., Shevchenko, A. & Knoblich, J. A. A protein complex containing Inscuteable and the Gα-binding protein Pins orients asymmetric cell divisions in Drosophila. Curr. Biol. 10, 353–362 (2000).

    Article  CAS  Google Scholar 

  12. Yu, F., Morin, X., Cai, Y., Yang, X. & Chia, W. Analysis of partner of inscuteable, a novel player of Drosophila asymmetric divisions, reveals two distinct steps in inscuteable apical localization. Cell 100, 399–409 (2000).

    Article  CAS  Google Scholar 

  13. Lorson, M. A., Horvitz, H. R. & van den Heuvel, S. LIN-5 is a novel component of the spindle apparatus required for chromosome segregation and cleavage plane specification in Caenorhabditis elegans. J. Cell Biol. 148, 73–86 (2000).

    Article  CAS  Google Scholar 

  14. Du, Q. & Macara, I. G. Mammalian Pins is a conformational switch that links NuMA to heterotrimeric G proteins. Cell 119, 503–516 (2004).

    Article  CAS  Google Scholar 

  15. Bellaiche, Y. et al. The Partner of Inscuteable/Discs-large complex is required to establish planar polarity during asymmetric cell division in Drosophila. Cell 106, 355–366 (2001).

    Article  CAS  Google Scholar 

  16. Yu, F. et al. Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions. Genes Dev. 19, 1341–1353 (2005).

    Article  CAS  Google Scholar 

  17. Guan, Z. et al. Mushroom body defect, a gene involved in the control of neuroblast proliferation in Drosophila, encodes a coiled-coil protein. Proc. Natl Acad. Sci. USA 97, 8122–8127 (2000).

    Article  CAS  Google Scholar 

  18. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  19. Prokop, A. & Technau, G. M. Normal function of the mushroom body defect gene of Drosophila is required for the regulation of the number and proliferation of neuroblasts. Dev. Biol. 161, 321–337 (1994).

    Article  CAS  Google Scholar 

  20. Yu, J. X., Guan, Z. & Nash, H. A. The mushroom body defect (mud) gene product is an essential component of the meiosis II spindle apparatus in Drosophila oocytes. Genetics doi:10.1534/genetics.105.051557.

  21. Siller, K. H., Serr, M., Steward, R., Hays, T. S. & Doe, C. Q. Live imaging of Drosophila brain neuroblasts reveals a role for Lis1/dynactin in spindle assembly and mitotic checkpoint control. Mol. Biol. Cell 16, 5127–5140 (2005).

    Article  CAS  Google Scholar 

  22. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  Google Scholar 

  23. Kaltschmidt, J. A., Davidson, C. M., Brown, N. H. & Brand, A. H. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biol. 2, 7–12 (2000).

    Article  CAS  Google Scholar 

  24. Merdes, A., Ramyar, K., Vechio, J. D. & Cleveland, D. W. A complex of NuMA and cytoplasmic dynein is essential for mitotic spindle assembly. Cell 87, 447–458 (1996).

    Article  CAS  Google Scholar 

  25. Peterson, F. C., Penkert, R. R., Volkman, B. F. & Prehoda, K. E. Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB–PDZ transition. Mol. Cell 13, 665–676 (2004).

    Article  CAS  Google Scholar 

  26. Siegrist, S. E. & Doe, C. Q. Extrinsic cues orient the cell division axis in Drosophila embryonic neuroblasts. Development 133, 529–536 (2006).

    Article  CAS  Google Scholar 

  27. Heuer, J. G., Li, K. & Kaufman, T. C. The Drosophila homeotic target gene centrosomin (cnn) encodes a novel centrosomal protein with leucine zippers and maps to a genomic region required for midgut morphogenesis. Development 121, 3861–3876 (1995).

    CAS  PubMed  Google Scholar 

  28. Compton, D. A. & Cleveland, D. W. NuMA is required for the proper completion of mitosis. J. Cell Biol. 120, 947–957 (1993).

    Article  CAS  Google Scholar 

  29. Yu, F., Cai, Y., Kaushik, R., Yang, X. & Chia, W. Distinct roles of Gαi and Gβ13F subunits of the heterotrimeric G protein complex in the mediation of Drosophila neuroblast asymmetric divisions. J. Cell Biol. 162, 623–633 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would especially like to thank H. Nash for providing Mud antibody and mutants ahead of publication, and for sharing unpublished data. We also thank F. Matsuzaki for communicating results prior to publication; R. Nipper, K. Prehoda, T. Kaufman, T. Megraw, F. Yu, X. Morin, W. Chia and A. Wodarz for generously sharing reagents; S. Siegrist for providing in vitro cultures of embryonic neuroblasts; S. Schneider for his help with sequence alignments; K. Hirono and K. Robinson for excellent technical assistance; and S. Siegrist, B. Bowerman, K. Prehoda and S. Schneider for stimulating discussions. This work was supported by an American Heart Association pre-doctoral fellowship (K.H.S.) and by the Howard Hughes Medical Institute (C.Q.D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Q. Doe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1 and S2 (PDF 380 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1441 kb)

Supplementary Information

Supplementary Movie 2 (MOV 1224 kb)

Supplementary Information

Supplementary Movie 3 (MOV 976 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1603 kb)

Supplementary Information

Supplementary Movie 5 (MOV 2300 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siller, K., Cabernard, C. & Doe, C. The NuMA-related Mud protein binds Pins and regulates spindle orientation in Drosophila neuroblasts. Nat Cell Biol 8, 594–600 (2006). https://doi.org/10.1038/ncb1412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1412

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing