Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p63 regulates an adhesion programme and cell survival in epithelial cells

Abstract

p63 is critical for epithelial development yet little is known about the transcriptional programmes it regulates. By characterising transcriptional changes and cellular effects following modulation of p63 expression, we have defined a vital role for p63 in cellular adhesion. Knockdown of p63 expression caused downregulation of cell adhesion-associated genes, cell detachment and anoikis in mammary epithelial cells and keratinocytes. Conversely, overexpression of the TAp63γ or ΔNp63α isoforms of p63 upregulated cell adhesion molecules, increased cellular adhesion and conferred resistance to anoikis. Apoptosis induced by loss of p63 was rescued by signalling downstream of β4 integrin. Our results implicate p63 as a key regulator of cellular adhesion and survival in basal cells of the mammary gland and other stratified epithelial tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Loss of endogenous p63 expression induces detachment and death in mammary epithelial cells.
Figure 2: Identification of an adhesion subprogramme regulated by p63.
Figure 3: Regulation of cellular adhesion factors by p63.
Figure 4: p63 activates adhesion–integrin signalling and promotes cell adhesion.
Figure 5: Elevated p63 expression suppresses apoptosis following cell detachment.
Figure 6: β4 integrin partially protects from anoikis induced by p63 loss.
Figure 7: p63 controls a cellular adhesion programme in primary mammary epithelial cells.
Figure 8: p63 regulates cellular adhesion and survival in other epithelial tissues.

Similar content being viewed by others

References

  1. Fuchs, E. & Raghavan, S. Getting under the skin of epidermal morphogenesis. Nature Rev. Genet. 3, 199–209 (2002).

    Article  CAS  Google Scholar 

  2. Mills, A. A. et al. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398, 708–713 (1999).

    Article  CAS  Google Scholar 

  3. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

    Article  CAS  Google Scholar 

  4. Koster, M. I., Kim, S., Mills, A. A., DeMayo, F. J. & Roop, D. R. p63 is the molecular switch for initiation of an epithelial stratification program. Genes Dev. 18, 126–131 (2004).

    Article  CAS  Google Scholar 

  5. Hibi, K. et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc. Natl Acad. Sci. USA 97, 5462–5467 (2000).

    Article  CAS  Google Scholar 

  6. Westfall, M. D. & Pietenpol, J. A. p63: Molecular complexity in development and cancer. Carcinogenesis 25, 857–864 (2004).

    Article  CAS  Google Scholar 

  7. McKeon, F. p63 and the epithelial stem cell: more than status quo? Genes Dev. 18, 465–469 (2004).

    Article  CAS  Google Scholar 

  8. Yang, A. et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol. Cell 2, 305–316 (1998).

    Article  CAS  Google Scholar 

  9. King, K. E. et al. δNp63α functions as both a positive and a negative transcriptional regulator and blocks in vitro differentiation of murine keratinocytes. Oncogene 22, 3635–3644 (2003).

    Article  CAS  Google Scholar 

  10. Dohn, M., Zhang, S. & Chen, X. p63α and δNp63α can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. Oncogene 20, 3193–3205 (2001).

    Article  CAS  Google Scholar 

  11. Wu, G. et al. δNp63α and TAp63α regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 63, 2351–7235 (2003).

    CAS  PubMed  Google Scholar 

  12. Ellisen, L. W. et al. REDD1, a developmentally regulated transcriptional target of p63 and p53, links p63 to regulation of reactive oxygen species. Mol. Cell 10, 995–1005 (2002).

    Article  CAS  Google Scholar 

  13. Kurata, S. et al. p51/p63 controls subunit α3 of the major epidermis integrin anchoring the stem cells to the niche. J. Biol. Chem. 279, 50069–50077 (2004).

    Article  CAS  Google Scholar 

  14. Dellavalle, R. P. et al. CUSP/p63 expression in rat and human tissues. J. Dermatol. Sci. 27, 82–87 (2001).

    Article  CAS  Google Scholar 

  15. Pellegrini, G. et al. p63 identifies keratinocyte stem cells. Proc. Natl Acad. Sci. USA 98, 3156–3161 (2001).

    Article  CAS  Google Scholar 

  16. Nylander, K. et al. Differential expression of p63 isoforms in normal tissues and neoplastic cells. J. Pathol. 198, 417–427 (2002).

    Article  CAS  Google Scholar 

  17. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  Google Scholar 

  18. Shimada, A. et al. The transcriptional activities of p53 and its homologue p51/p63: similarities and differences. Cancer Res. 59, 2781–2786 (1999).

    CAS  PubMed  Google Scholar 

  19. Nishi, H. et al. p53 homologue p63 represses epidermal growth factor receptor expression. J. Biol. Chem. 276, 41717–41724 (2001).

    Article  CAS  Google Scholar 

  20. Reginato, M. J. et al. Integrins and EGFR coordinately regulate the pro-apoptotic protein Bim to prevent anoikis. Nature Cell Biol. 5, 733–740 (2003).

    Article  CAS  Google Scholar 

  21. Frisch, S. M. & Francis, H. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124, 619–626 (1994).

    Article  CAS  Google Scholar 

  22. Meredith, J. E., Jr., Fazeli, B. & Schwartz, M. A. The extracellular matrix as a cell survival factor. Mol. Biol. Cell 4, 953–961 (1993).

    Article  CAS  Google Scholar 

  23. Rytomaa, M., Martins, L. M. & Downward, J. Involvement of FADD and caspase-8 signalling in detachment-induced apoptosis. Curr. Biol. 9, 1043–1046 (1999).

    Article  CAS  Google Scholar 

  24. Reginato, M. J. et al. Bim regulation of lumen formation in cultured mammary epithelial acini is targeted by oncogenes. Mol. Cell Biol. 25, 4591–4601 (2005).

    Article  CAS  Google Scholar 

  25. Weaver, V. M. et al. β4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell 2, 205–216 (2002).

    Article  CAS  Google Scholar 

  26. Mills, A. A., Qi, Y. & Bradley, A. Conditional inactivation of p63 by Cre-mediated excision. Genesis 32, 138–141 (2002).

    Article  CAS  Google Scholar 

  27. Li, N. et al. TA-p63-γ regulates expression of δN-p63 in a manner that is sensitive to p53. Oncogene 25, 2349–2359 (2006).

    Article  CAS  Google Scholar 

  28. Ying, H., Chang, D. L., Zheng, H., McKeon, F. & Xiao, Z. X. DNA-binding and transactivation activities are essential for TAp63 protein degradation. Mol. Cell Biol. 25, 6154–6164 (2005).

    Article  CAS  Google Scholar 

  29. Ihrie, R. A. et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell 120, 843–856 (2005).

    Article  CAS  Google Scholar 

  30. Lechler, T. & Fuchs, E. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437, 275–280 (2005).

    Article  CAS  Google Scholar 

  31. Keyes, W. M. et al. p63 deficiently activates a program of cellular senescence and leads to accelerated aging. Genes Dev. 19, 1986–1999 (2005).

    Article  CAS  Google Scholar 

  32. Jost, M., Huggett, T. M., Kari, C. & Rodeck, U. Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol. Biol. Cell 12, 1519–1527 (2001).

    Article  CAS  Google Scholar 

  33. Dowling, J., Yu, Q. C. & Fuchs, E. β4 integrin is required for hemidesmosome formation, cell adhesion and cell survival. J. Cell Biol. 134, 559–572 (1996).

    Article  CAS  Google Scholar 

  34. Zahir, N. et al. Autocrine laminin-5 ligates α6β4 integrin and activates RAC and NFκB to mediate anchorage-independent survival of mammary tumors. J. Cell Biol. 163, 1397–1407 (2003).

    Article  CAS  Google Scholar 

  35. Gumbiner, B. M. Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell 84, 345–357 (1996).

    Article  CAS  Google Scholar 

  36. Nanba, D., Nakanishi, Y. & Hieda, Y. Changes in adhesive properties of epithelial cells during early morphogenesis of the mammary gland. Dev. Growth Differ. 43, 535–544 (2001).

    Article  CAS  Google Scholar 

  37. Watt, F. M. & Hogan, B. L. Out of Eden: stem cells and their niches. Science 287, 1427–1430 (2000).

    Article  CAS  Google Scholar 

  38. Fuchs, E., Tumbar, T. & Guasch, G. Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778 (2004).

    Article  CAS  Google Scholar 

  39. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  Google Scholar 

  40. Gautier, L., Cope, L., Bolstad, B. M. & Irizarry, R. A. affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20, 307–315 (2004).

    Article  CAS  Google Scholar 

  41. Eisen, M. B., Spellman, P. T., Brown, P. O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  42. Carroll, J. S. et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell 122, 33–43 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank F. McKeon for p63 cDNAs and comments on the manuscript, M. Reginato (Drexel University College of Medicine) for helpful discussions and critical reading of the manuscript, P. Grosu and the Bauer Center for Genomics Research, Harvard University, for assistance with computational software. This work was supported by the Association for International Cancer Research (AICR) #04-156 (D.L.), the Deparment of Defense (DOD) Breast Cancer Research Program Awards DAMD17-01-1-0222 (M.B.) w81XWH-04-1-0512 (J.C.), National Institute of Dental and Craniofacial Research (NIDCR) DE15945-01, The Avon Foundation, and the Mary Kay Ash Charitable Foundation (L.E.), NCI CA080111, Breast Cancer Research Foundation, and DOD DAMD17-02-1-0692 (J.S.B.), National Institutes of Health (NIH) AR47898 (A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan S. Brugge.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3 and S4 (PDF 237 kb)

Supplementary Information

Supplementary Table S1 (XLS 139 kb)

Supplementary Information

Supplementary Table S2 (XLS 4044 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carroll, D., Carroll, J., Leong, CO. et al. p63 regulates an adhesion programme and cell survival in epithelial cells. Nat Cell Biol 8, 551–561 (2006). https://doi.org/10.1038/ncb1420

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1420

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing