Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution

Abstract

The mammalian Golgi apparatus exists as stacks of cisternae that are laterally linked to form a continuous membrane ribbon, but neither the molecular requirements for, nor the purpose of, Golgi ribbon formation are known. Here, we demonstrate that ribbon formation is mediated by specific membrane-fusion events that occur during Golgi assembly, and require the Golgi proteins GM130 and GRASP65. Furthermore, these GM130 and GRASP65-dependent lateral cisternal-fusion reactions are necessary to achieve uniform distribution of enzymes in the Golgi ribbon. The membrane continuity created by ribbon formation facilitates optimal processing conditions in the biosynthetic pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GM130 knockdown.
Figure 2: Depletion of GM130 converts the Golgi apparatus into a perinuclear collection of short ministacks.
Figure 3: Cargo transport in cells depleted of GM130 occurs with normal kinetics.
Figure 4: Decreased lateral mobility of Golgi enzymes.
Figure 5: Disrupted enzyme distribution after GM130 knockdown.
Figure 6: Disruption of the Golgi ribbon results in decreased sialylation.
Figure 7: The GM130 GRASP65-binding domain is required for Golgi ribbon formation.
Figure 8: GRASP65 is required for Golgi ribbon formation.

Similar content being viewed by others

References

  1. Rios, R. M. & Bornens, M. The Golgi apparatus at the cell centre. Curr. Opin. Cell Biol. 15, 60–66 (2003).

    Article  CAS  Google Scholar 

  2. Thyberg, J. & Moskalewski, S. Role of microtubules in the organization of the Golgi complex. Exp. Cell Res. 246, 263–279 (1999).

    Article  CAS  Google Scholar 

  3. Cole, N. B., Sciaky, N., Marotta, A., Song, J. & Lippincott-Schwartz, J. Golgi dispersal during microtubule disruption: regeneration of Golgi stacks at peripheral endoplasmic reticulum exit sites. Mol. Biol. Cell 7, 631–650 (1996).

    Article  CAS  Google Scholar 

  4. Storrie, B. et al. Recycling of Golgi-resident glycosyltransferases through the ER reveals a novel pathway and provides an explanation for nocodazole-induced Golgi scattering. J. Cell Biol. 143, 1505–1521 (1998).

    Article  CAS  Google Scholar 

  5. Akhmanova, A. et al. Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell 104, 923–935 (2001).

    Article  CAS  Google Scholar 

  6. Diao, A., Rahman, D., Pappin, D. J., Lucocq, J. & Lowe, M. The coiled-coil membrane protein golgin-84 is a novel rab effector required for Golgi ribbon formation. J Cell Biol 160, 201–212 (2003).

    Article  CAS  Google Scholar 

  7. Fridmann-Sirkis, Y., Siniossoglou, S. & Pelham, H. R. TMF is a golgin that binds Rab6 and influences Golgi morphology. BMC Cell Biol 5, 18 (2004).

    Article  Google Scholar 

  8. Larocca, M. C. et al. AKAP350 interaction with cdc42 interacting protein 4 at the golgi apparatus. Mol Biol Cell 15, 2771–2781 (2004).

    Article  CAS  Google Scholar 

  9. Perez, F. et al. CLIPR-59, a new trans-Golgi/TGN cytoplasmic linker protein belonging to the CLIP-170 family. J Cell Biol 156, 631–642 (2002).

    Article  CAS  Google Scholar 

  10. Walenta, J. H., Didier, A. J., Liu, X. & Kramer, H. The Golgi-associated hook3 protein is a member of a novel family of microtubule-binding proteins. J. Cell Biol. 152, 923–934 (2001).

    Article  CAS  Google Scholar 

  11. Rios, R. M., Sanchis, A., Tassin, A. M., Fedriani, C. & Bornens, M. GMAP-210 recruits γ-tubulin complexes to cis-Golgi membranes and is required for Golgi ribbon formation. Cell 118, 323–335 (2004).

    Article  CAS  Google Scholar 

  12. Zolov, S. N. & Lupashin, V. V. Cog3p depletion blocks vesicle-mediated Golgi retrograde trafficking in HeLa cells. J. Cell Biol. 168, 747–759 (2005).

    Article  CAS  Google Scholar 

  13. Shorter, J. & Warren, G. A role for the vesicle tethering protein, p115, in the post-mitotic stacking of reassembling Golgi cisternae in a cell-free system. J. Cell Biol. 146, 57–70 (1999).

    Article  CAS  Google Scholar 

  14. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996).

    Article  CAS  Google Scholar 

  15. Puri, S. & Linstedt, A. D. Capacity of the Golgi apparatus for biogenesis from the endoplasmic reticulum. Mol. Biol. Cell 14, 5011–5018 (2003).

    Article  CAS  Google Scholar 

  16. de Graffenried, C. L. & Bertozzi, C. R. The roles of enzyme localisation and complex formation in glycan assembly within the Golgi apparatus. Curr. Opin. Cell Biol. 16, 356–363 (2004).

    Article  CAS  Google Scholar 

  17. Spiro, R. G. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002).

    Article  CAS  Google Scholar 

  18. Nakamura, N., Lowe, M., Levine, T. P., Rabouille, C. & Warren, G. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell 89, 445–455 (1997).

    Article  CAS  Google Scholar 

  19. Puthenveedu, M. A. & Linstedt, A. D. Gene replacement reveals that p115/SNARE interactions are essential for Golgi biogenesis. Proc. Natl Acad. Sci. USA 101, 1253–1256 (2004).

    Article  CAS  Google Scholar 

  20. Barr, F. A., Nakamura, N. & Warren, G. Mapping the interaction between GRASP65 and GM130, components of a protein complex involved in the stacking of Golgi cisternae. EMBO J. 17, 3258–3268 (1998).

    Article  CAS  Google Scholar 

  21. Sutterlin, C., Polishchuk, R., Pecot, M. & Malhotra, V. The Golgi-associated protein GRASP65 regulates spindle dynamics and is essential for cell division. Mol. Biol. Cell 16, 3211–3222 (2005).

    Article  Google Scholar 

  22. Wang, Y., Seemann, J., Pypaert, M., Shorter, J. & Warren, G. A direct role for GRASP65 as a mitotically regulated Golgi stacking factor. EMBO J. 22, 3279–3290 (2003).

    Article  CAS  Google Scholar 

  23. Sonnichsen, B. et al. A role for giantin in docking COPI vesicles to Golgi membranes. J. Cell Biol. 140, 1013–1021 (1998).

    Article  CAS  Google Scholar 

  24. Seemann, J., Jokitalo, E., Pypaert, M. & Warren, G. Matrix proteins can generate the higher order architecture of the Golgi apparatus. Nature 407, 1022–1026 (2000).

    Article  CAS  Google Scholar 

  25. Roti, E. C. et al. Interaction with GM130 during HERG ion channel trafficking. Disruption by type-2 congenital long QT syndrome mutations. Human Ether-a-go-go-Related Gene. J. Biol Chem. 277, 47779–47785 (2002).

    Article  CAS  Google Scholar 

  26. Preisinger, C. et al. YSK1 is activated by the Golgi matrix protein GM130 and plays a role in cell migration through its substrate 14–3–3ζ. J. Cell Biol. 164, 1009–1020 (2004).

    Article  CAS  Google Scholar 

  27. Puthenveedu, M. A. & Linstedt, A. D. Evidence that Golgi structure depends on a p115 activity that is independent of the vesicle tether components giantin and GM130. J. Cell Biol. 155, 227–238 (2001).

    Article  CAS  Google Scholar 

  28. Vasile, E., Perez, T., Nakamura, N. & Krieger, M. Structural integrity of the Golgi is temperature sensitive in conditional-lethal mutants with no detectable GM130. Traffic 4, 254–272 (2003).

    Article  CAS  Google Scholar 

  29. Kondylis, V. & Rabouille, C. A novel role for dp115 in the organization of tER sites in Drosophila. J. Cell Biol. 162, 185–198 (2003).

    Article  CAS  Google Scholar 

  30. Shorter, J. et al. GRASP55, a second mammalian GRASP protein involved in the stacking of Golgi cisternae in a cell-free system. EMBO J. 18, 4949–4960 (1999).

    Article  CAS  Google Scholar 

  31. Linstedt, A. D. Stacking the cisternae. Curr. Biol. 9, R893–R896 (1999).

    Article  CAS  Google Scholar 

  32. Kondylis, V., Spoorendonk, K. M. & Rabouille, C. dGRASP localization and function in the early exocytic pathway in Drosophila S2 cells. Mol. Biol. Cell 16, 4061–4072 (2005)

    Article  CAS  Google Scholar 

  33. Yano, H. et al. Distinct functional units of the Golgi complex in Drosophila cells. Proc. Natl Acad. Sci. USA 102, 13467–13472 (2005).

    Article  CAS  Google Scholar 

  34. Altmann, F., Fabini, G., Ahorn, H. & Wilson, I. B. Genetic model organisms in the study of N-glycans. Biochimie 83, 703–712 (2001).

    Article  CAS  Google Scholar 

  35. Sutterlin, C., Hsu, P., Mallabiabarrena, A. & Malhotra, V. Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109, 359–369 (2002).

    Article  CAS  Google Scholar 

  36. Kano, F. et al. MEK and Cdc2 kinase are sequentially required for Golgi disassembly in MDCK cells by the mitotic Xenopus extracts. J. Cell Biol. 149, 357–368 (2000).

    Article  CAS  Google Scholar 

  37. Puthenveedu, M. A. & Linstedt, A. D. In search of an essential step during mitotic Golgi disassembly and inheritance. Exp. Cell Res. 271, 22–27 (2001).

    Article  CAS  Google Scholar 

  38. Norman, T. C. et al. Genetic selection of peptide inhibitors of biological pathways. Science 285, 591–595 (1999).

    Article  CAS  Google Scholar 

  39. Natarajan, R. & Linstedt, A. D. A cycling cis-Golgi protein mediates endosome-to-Golgi traffic. Mol. Biol. Cell 15, 4798–4806 (2004).

    Article  CAS  Google Scholar 

  40. Puri, S., Bachert, C., Fimmel, C. J. & Linstedt, A. D. Cycling of early Golgi proteins via the cell surface and endosomes upon lumenal pH disruption. Traffic 3, 641–653 (2002).

    Article  CAS  Google Scholar 

  41. Wright, R. Transmission electron microscopy of yeast. Microsc Res Tech 51, 496–510 (2000).

    Article  CAS  Google Scholar 

  42. Jesch, S. A. & Linstedt, A. D. The Golgi and endoplasmic reticulum remain independent during mitosis in HeLa cells. Mol Biol Cell 9, 623–635 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Suhan for the electron microscopy, T. Feinstein for the VSV-G–GFP cells and for assistance with GRASP65 knockdown, T. Lee for helpful discussions, J. White for the GalNAc-T2 cells, O. Weisz for the anti-VSV-G antibody, and V. Malhotra and G. Warren for the GRASP65 antibodies. Funding was provided by grants RSG-03-148-01-CSM and GM-56779-02 to A.D.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam D. Linstedt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 262 kb)

Supplementary Information

Supplementary Movie S1 (MOV 788 kb)

Supplementary Information

Supplementary Movie S2 (MOV 1000 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puthenveedu, M., Bachert, C., Puri, S. et al. GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8, 238–248 (2006). https://doi.org/10.1038/ncb1366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing