Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitogenic signalling and the p16INK4a–Rb pathway cooperate to enforce irreversible cellular senescence

Abstract

The p16INK4a cyclin-dependent kinase inhibitor has a key role in establishing stable G1 cell-cycle arrest through activating the retinoblastoma (Rb) tumour suppressor protein pRb1,2,3,4,5 in cellular senescence. Here, we show that the p16INK4a /Rb-pathway also cooperates with mitogenic signals to induce elevated intracellular levels of reactive oxygen species (ROS), thereby activating protein kinase Cδ (PKCδ) in human senescent cells. Importantly, once activated by ROS, PKCδ promotes further generation of ROS, thus establishing a positive feedback loop to sustain ROS–PKCδ signalling6,7,8. Sustained activation of ROS–PKCδ signalling irreversibly blocks cytokinesis, at least partly through reducing the level of WARTS (also known as LATS1), a mitotic exit network (MEN) kinase required for cytokinesis9,10,11, in human senescent cells. This irreversible cytokinetic block is likely to act as a second barrier to cellular immortalization ensuring stable cell-cycle arrest in human senescent cells. These results uncover an unexpected role for the p16INK4a–Rb pathway and provide a new insight into how senescent cell-cycle arrest is enforced in human cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitogenic signals cooperate with pRb and/or p53 to induce irreversible cell-cycle arrest.
Figure 2: Involvement of ROS–PKCδ signalling in irreversible cell-cycle arrest.
Figure 3: Downregulation of WARTS by PKCδ.
Figure 4: p16INK4a–Rb pathway elicits ROS–PKCδ signalling in primary human diploid fibroblasts.
Figure 5: Irreversibility of replicative senescence.

Similar content being viewed by others

References

  1. Lowe, S. W., Cepero, E. & Evan, G. Intrinsic tumour suppression. Nature 432, 307–315 (2004).

    Article  CAS  Google Scholar 

  2. Sharpless, N. E. & DePinho, R. A. Cancer: crime and punishment. Nature 436, 636–637 (2005).

    Article  CAS  Google Scholar 

  3. Serrano, M. & Blasco, M. A. Putting the stress on senescence. Curr. Opin. Cell Biol. 13, 748–753 (2001).

    Article  CAS  Google Scholar 

  4. Drayton, S. & Peters, G. Immortalisation and transformation revisited. Curr. Opin. Genet. Dev. 12, 98–104 (2002).

    Article  CAS  Google Scholar 

  5. Herbig, U. & Sedivy, J. M. Regulation of growth arrest in senescence: telomere damage is not the end of the story. Mech. Ageing & Dev. 127, 16–24 (2006).

    Article  CAS  Google Scholar 

  6. Ghayur, T. et al. Proteolytic activation of protein kinase C δ by an ICE/CED 3-like protease induces characteristics of apoptosis. J. Exp. Med. 184, 2399–2404 (1996).

    Article  CAS  Google Scholar 

  7. Bey, E. A. et al. Protein kinase Cδ is required for p47phox phosphorylation and translocation in activated human monocytes. J. Immunol. 173, 5730–5738 (2004).

    Article  CAS  Google Scholar 

  8. Talior, I., Tennenbaum, T., Kuroki, T. & Eldar-Finkelman, H. PKC-δ-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am. J. Physiol. Endocrinol. Metab. 288, E405–E411 (2005).

    Article  CAS  Google Scholar 

  9. Iida, S. et al. Tumor suppressor WARTS ensures genomic integrity by regulating both mitotic progression and G1 tetraploidy checkpoint function. Oncogene 23, 5266–5274 (2004).

    Article  CAS  Google Scholar 

  10. Yang, X. et al. LATS1 tumour suppressor affects cytokinesis by inhibiting LIMK1. Nature Cell Biol. 6, 609–617 (2004).

    Article  CAS  Google Scholar 

  11. Bothos, J., Tuttle, R. L., Ottey, M., Luca, F. C. & Halazonetis, T. D. Human LATS1 is a mitotic exit network kinase. Cancer Res. 65, 6568–6575 (2005).

    Article  CAS  Google Scholar 

  12. Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M. & Jacks, T. Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature 424, 223–228 (2003).

    Article  CAS  Google Scholar 

  13. Dirac, A. M. & Bernards, R. Reversal of senescence in mouse fibroblasts through lentiviral suppression of p53. J. Biol. Chem. 278, 11731–11734 (2003).

    Article  CAS  Google Scholar 

  14. Beausejour, C. M. et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 22, 4212–4222 (2003).

    Article  CAS  Google Scholar 

  15. Dai, C. Y. & Enders, G. H. p16INK4a can initiate an autonomous senescence program. Oncogene 19, 1613–1622 (2000).

    Article  CAS  Google Scholar 

  16. Gorman, S. D. & Cristofalo, V. J. Reinitiation of cellular DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. J. Cell. Physiol. 125, 122–126 (1985).

    Article  CAS  Google Scholar 

  17. Tahara, H., Sato, E., Noda, A. & Ide, T. Increase in expression level of p21sdi1/cip1/waf1 with increasing division age in both normal and SV40-transformed human fibroblasts. Oncogene 10, 835–840 (1995).

    CAS  PubMed  Google Scholar 

  18. Lloyd, A. C. Limits to lifespan. Nature Cell Biol. 4, E25–E27 (2002).

    Article  CAS  Google Scholar 

  19. Satyanarayana, A. et al. Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Mol. Cell. Biol. 24, 5459–5474 (2004).

    Article  CAS  Google Scholar 

  20. Irani, K. et al. Mitogenic signaling mediated by oxidants in Ras-transformed fibroblasts. Science, 275, 1649–1652 (1997).

    Article  CAS  Google Scholar 

  21. Lee, A. C. et al. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 274, 7936–7940 (1999).

    Article  CAS  Google Scholar 

  22. Wheaton, K. & Riabowol, K. Protein kinase C δ blocks immediate-early gene expression in senescent cells by inactivating serum response factor. Mol. Cell. Biol. 24, 7298–7311 (2004).

    Article  CAS  Google Scholar 

  23. Konishi, H. et al. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2 . Proc. Natl Acad. Sci. USA 94, 11233–11237 (1997).

    Article  CAS  Google Scholar 

  24. Watanabe, T. et al. Cell division arrest induced by phorbol ester in CHO cells overexpressing protein kinase C-δ subspecies. Proc. Natl Acad. Sci. USA 89, 10159–10163 (1992).

    Article  CAS  Google Scholar 

  25. Miyamoto, A. et al. Increased proliferation of B cells and auto-immunity in mice lacking protein kinase Cδ. Nature 416, 865–869 (2002).

    Article  CAS  Google Scholar 

  26. Voorhoeve, P. M. & Agami, R. The tumor-suppressive functions of the human INK4A locus. Cancer Cell 4, 311–319 (2003).

    Article  CAS  Google Scholar 

  27. Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997).

    Article  CAS  Google Scholar 

  28. Ohtani, N. et al. Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence. Nature 409, 1067–1070 (2001).

    Article  CAS  Google Scholar 

  29. Maehara, K. et al. Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J. Cell Biol. 168, 553–560 (2005).

    Article  CAS  Google Scholar 

  30. Behrend, L., Mohr, A., Dick, T. & Zwacka, R. M. Manganase superoxide dismutase induces p53-dependent senescence in colorectal cancer cells. Mol. Cell. Biol. 25, 7758–7769 (2005).

    Article  CAS  Google Scholar 

  31. Chen, J. H. et al. Loss of proliferative capacity and induction of senescence in oxidative stressed human fibroblasts. J. Biol. Chem. 279, 49439–49446 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Mann, G. Peters, J. Campisi and U. Kikkawa for helpful comments on the manuscript; R. Agami for providing p16 knockdown construct; D. Beach and G. Hannon for providing pMarX retrovirus vector; W. Jiang and R. Fukunaga for providing anti-PRC1 antibody; and D. Kufe and S. Ohno for PKCδ cDNA. We also thank A. Hirao for his useful suggestion in analysis of intracellular ROS. This work was supported by grants from Ministry of Education, Science, Sports and Technology of Japan, Ministry of Health, Labour and Welfare of Japan, the Uehara Memorial Foundation, the Sumitomo Foundation, the Nakatomi Foundation, the Sagawa Foundation for Promotion of Cancer Research, the Inamori Foundation and Sankyo Foundation of Life Science (E.H.). A.T. is supported by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Hara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2 and S3 (PDF 490 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, A., Ohtani, N., Yamakoshi, K. et al. Mitogenic signalling and the p16INK4a–Rb pathway cooperate to enforce irreversible cellular senescence. Nat Cell Biol 8, 1291–1297 (2006). https://doi.org/10.1038/ncb1491

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1491

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing