Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control

Abstract

The polarized glandular organization of epithelial cells is frequently lost during development of carcinoma. However, the specific oncogene targets responsible for polarity disruption have not been identified. Here, we demonstrate that activation of ErbB2 disrupts apical–basal polarity by associating with Par6–aPKC, components of the Par polarity complex. Inhibition of interaction between Par6 and aPKC blocked the ability of ErbB2 to disrupt the acinar organization of breast epithelia and to protect cells from apoptosis but was not required for cell proliferation. Therefore, oncogenes target polarity proteins to disrupt glandular organization and protect cells from apoptotic death during development of carcinoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ErbB2 initiates disruption of apical–basal polarity at the apical–basal border.
Figure 2: ErbB2 disrupts the Par complex and recruits Par6–aPKC.
Figure 3: Par6–aPKC is required for ErbB2-induced transformation of MCF10A three-dimensional (3D) acini.
Figure 4: ErbB2–Par6–aPKC interaction is not required for ErbB2-induced proliferation.
Figure 5: Increased apoptosis in response to ErbB2 activation in cells expressing Par6K19A.
Figure 6: Bcl-2 expression partially rescues ErbB2-induced disruption of epithelial organization.
Figure 7: Loss of Scribble rescues formation of multi-acinar structures.

Similar content being viewed by others

References

  1. Schnitt, S. J. & Connolly, J. L. in Diseases of the Breast (eds. Harris, J., Lippman, M. E., Morrow, M. & Osborne, K.) 77–99 (Lippincott Williams & Wilkins, Philadelphia, 2004).

    Google Scholar 

  2. Polosukhin, V. V. Ultrastructural of the bronchial epithelium in chronic inflammation. Ultrastruct. Pathol. 25, 119–128 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Dranoff, G. Cytokines in cancer pathogenesis and cancer therapy. Nature Rev. Cancer 4, 11–22 (2004).

    Article  CAS  Google Scholar 

  4. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Schneeberger, E. E. & Lynch, R. D. The tight junction: a multifunctional complex. Am. J. Physiol. Cell Physiol. 286, C1213–C1228 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez-Boulan, E., Kreitzer, G. & Musch, A. Organization of vesicular trafficking in epithelia. Nature Rev. Mol. Cell Biol. 6, 233–247 (2005).

    Article  CAS  Google Scholar 

  7. Zegers, M. M., O'Brien, L. E., Yu, W., Datta, A. & Mostov, K. E. Epithelial polarity and tubulogenesis in vitro. Trends Cell Biol. 13, 169–176 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Muthuswamy, S. K., Li, D., Lelievre, S., Bissell, M. J. & Brugge, J. S. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nature Cell Biol. 3, 785–792 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Schoenenberger, C. A., Zuk, A., Kendall, D. & Matlin, K. S. Multilayering and loss of apical polarity in MDCK cells transformed with viral K-ras. J. Cell Biol. 112, 873–889 (1991).

    Article  CAS  PubMed  Google Scholar 

  10. Li, D. & Mrsny, R. J. Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J. Cell Biol. 148, 791–800 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reichmann, E. et al. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71, 1103–1116 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Fialka, I. et al. The estrogen-dependent c-JunER protein causes a reversible loss of mammary epithelial cell polarity involving a destabilization of adherens junctions. J. Cell Biol. 132, 1115–1132 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Jou, T. S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by RhoA and Rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rojas, R., Ruiz, W. G., Leung, S. M., Jou, T. S. & Apodaca, G. Cdc42-dependent modulation of tight junctions and membrane protein traffic in polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 12, 2257–2274 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Behrens, J. et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/β-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J. Cell Biol. 120, 757–766 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Bilder, D. Epithelial polarity and proliferation control: links from the Drosophila neoplastic tumor suppressors. Genes Dev. 18, 1909–1925 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoll, M. et al. Genetic variation in DLG5 is associated with inflammatory bowel disease. Nature Genet. 36, 476–480 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Ragaz, J. in Diseases of the Breast (eds. Harris, J., Lippman, M. E., Morrow, M. & Osborne, K.) 619–652 (Lippincott Williams & Wilkins, Philadelphia, 2004).

    Google Scholar 

  20. Hynes, N. E. & Lane, H. A. ERBB receptors and cancer: the complexity of targeted inhibitors. Nature Rev. Cancer 5, 341–354 (2005).

    Article  CAS  Google Scholar 

  21. Debnath, J. et al. The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111, 29–40 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Andrechek, E. R. et al. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA 97, 3444–3449 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muthuswamy, S. K., Gilman, M. & Brugge, J. S. Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol. Cell Biol. 19, 6845–6857 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Amara, J. F. et al. A versatile synthetic dimerizer for the regulation of protein–protein interactions. Proc. Natl Acad. Sci. USA 94, 10618–10623 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Etienne-Manneville, S. & Hall, A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 15, 67–72 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Macara, I. G. Par proteins: partners in polarization. Curr. Biol. 14, R160–R162 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Margolis, B. & Borg, J. P. Apicobasal polarity complexes. J. Cell Sci. 118, 5157–5159 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki, A. & Ohno, S. The PAR–aPKC system: lessons in polarity. J. Cell Sci. 119, 979–987 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Yamanaka, T. et al. PAR-6 regulates aPKC activity in a novel way and mediates cell-cell contact-induced formation of the epithelial junctional complex. Genes Cells 6, 721–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Ozdamar, B. et al. Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science 307, 1603–1609 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Noda, Y. et al. Molecular recognition in dimerization between PB1 domains. J. Biol. Chem. 278, 43516–43524 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, M. I., Gill, D. J., Perisic, O., Quinn, M. T. & Williams, R. L. PB1 domain-mediated heterodimerization in NADPH oxidase and signaling complexes of atypical protein kinase C with Par6 and p62. Mol. Cell 12, 39–50 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Loden, M., Perris, F., Nielsen, N. H., Emdin, S. O. & Landberg, G. C-erbB2, p27 and G1/S aberrations in human primary breast cancer. Anticancer Res. 23, 2053–2061 (2003).

    CAS  PubMed  Google Scholar 

  34. Qin, Y., Capaldo, C., Gumbiner, B. M. & Macara, I. G. The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin. J. Cell Biol. 171, 1061–1071 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Howley, P. M., Munger, K., Werness, B. A., Phelps, W. C. & Schlegel, R. Molecular mechanisms of transformation by the human papillomaviruses. Princess Takamatsu Symp. 20, 199–206 (1989).

    CAS  PubMed  Google Scholar 

  36. Nakagawa, S. & Huibregtse, J. M. Human scribble (Vartul) is targeted for ubiquitin-mediated degradation by the high-risk papillomavirus E6 proteins and the E6AP ubiquitin-protein ligase. Mol. Cell Biol. 20, 8244–8253 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kiyono, T. et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl Acad. Sci. USA 94, 11612–11616 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu, H., Radisky, D. C., Wang, F. & Bissell, M. J. Polarity and proliferation are controlled by distinct signaling pathways downstream of PI3-kinase in breast epithelial tumor cells. J. Cell Biol. 164, 603–612 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Guo, W. et al. β4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126, 489–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Downward, J. Targeting RAS signalling pathways in cancer therapy. Nature Rev. Cancer 3, 11–22 (2003).

    Article  CAS  Google Scholar 

  41. Yu, H. & Jove, R. The STATs of cancer — new molecular targets come of age. Nature Rev. Cancer 4, 97–105 (2004).

    Article  CAS  Google Scholar 

  42. Citri, A. & Yarden, Y. EGF–ERBB signalling: towards the systems level. Nature Rev. Mol. Cell Biol. 7, 505–516 (2006).

    Article  CAS  Google Scholar 

  43. Maurer, U., Charvet, C., Wagman, A. S., Dejardin, E. & Green, D. R. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol. Cell 21, 749–760 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Regala, R. P. et al. Atypical protein kinase C Q is an oncogene in human non-small cell lung cancer. Cancer Res. 65, 8905–8911 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Eder, A. M. et al. Atypical PKCι contributes to poor prognosis through loss of apical-basal polarity and cyclin E overexpression in ovarian cancer. Proc. Natl Acad. Sci. USA 102, 12519–12524 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, D. et al. A mammalian PAR-3–PAR-6 complex implicated in Cdc42/Rac1 and aPKC signalling and cell polarity. Nature Cell Biol. 2, 540–547 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Silva, J. M. et al. Second-generation shRNA libraries covering the mouse and human genomes. Nature Genet. 37, 1281–1288 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Dickins, R. A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nature Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Debnath, J., Muthuswamy, S. K. & Brugge, J. S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Muthuswamy laboratory for all their input and helpful discussions. We thank M. Zaratiegui for statistical analysis and interpretation and ARIAD pharmaceutical for the synthetic dimerizing ligand, AP1510. S.K.M. was supported by CA098830 from the National Cancer Institute (NCI), The V foundation Scholar award, Rita Allen Scholar award, Find a Cure Today (FACT), Glencove cares and Long Islanders Against Breast Cancer (LIBC) foundation. T.P. was supported by NCI Canada. T.H. was supported by a fellowship from the Department of Defense (DAMD17-03-1-0194). M.E.N. was also supported by a fellowship from the Department of Defense (DAMD17-03-0193). We dedicate this work to the memory of our friend and colleague, Teresa Haire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senthil K. Muthuswamy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aranda, V., Haire, T., Nolan, M. et al. Par6–aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8, 1235–1245 (2006). https://doi.org/10.1038/ncb1485

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1485

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing