Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription

Abstract

The c-Myc oncoprotein regulates transcription of genes that are associated with cell growth, proliferation and apoptosis1. c-Myc levels are modulated by ubiquitin/proteasome-mediated degradation1. Proteasome inhibition leads to c-Myc accumulation within nucleoli2, indicating that c-Myc might have a nucleolar function. Here we show that the proteins c-Myc and Max interact in nucleoli and are associated with ribosomal DNA. This association is increased upon activation of quiescent cells and is followed by recruitment of the Myc cofactor TRRAP, enhanced histone acetylation, recruitment of RNA polymerase I (Pol I), and activation of rDNA transcription. Using small interfering RNAs (siRNAs) against c-Myc and an inhibitor of Myc–Max interactions, we demonstrate that c-Myc is required for activating rDNA transcription in response to mitogenic signals. Furthermore, using the ligand-activated MycER (ER, oestrogen receptor) system, we show that c-Myc can activate Pol I transcription in the absence of Pol II transcription. These results suggest that c-Myc coordinates the activity of all three nuclear RNA polymerases, and thereby plays a key role in regulating ribosome biogenesis and cell growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of c-Myc in the nucleolus is associated with its DNA-binding function.
Figure 2: c-Myc, Max and other c-Myc cofactors associate with E-box-containing regions of rDNA in vivo.
Figure 3: Proteasome inhibition downregulates Pol I transcription.
Figure 4: Recruitment of c-Myc and cofactors to rDNA is required for activated rDNA transcription upon mitogenic stimulation of normal lymphocytes.
Figure 5: MycER activation stimulates pre-rRNA synthesis and enhances histone H4 acetylation at rDNA.

Similar content being viewed by others

References

  1. Oster, S. K., Ho, C. S., Soucie, E. L. & Penn, L. Z. The myc oncogene: MarvelouslY Complex. Adv. Cancer Res. 84, 81–154 (2002).

    Article  CAS  Google Scholar 

  2. Arabi, A., Rustum, C., Hallberg, E. & Wright, A. P. Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels. J. Cell Sci. 116, 1707–1717 (2003).

    Article  CAS  Google Scholar 

  3. McMahon, S. B., Wood, M. A. & Cole, M. D. The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol. Cell. Biol. 20, 556–562 (2000).

    Article  CAS  Google Scholar 

  4. Frank, S. R. et al. MYC recruits the TIP60 histone acetyltransferase complex to chromatin. EMBO Rep. 4, 575–580 (2003).

    Article  CAS  Google Scholar 

  5. Johnston, L. A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  Google Scholar 

  6. Schuhmacher, M. et al. Control of cell growth by c-Myc in the absence of cell division. Curr. Biol. 9, 1255–1258 (1999).

    Article  CAS  Google Scholar 

  7. Ruggero, D. & Pandolfi, P. P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  8. Gomez-Roman, N., Grandori, C., Eisenman, R. N. & White, R. J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  Google Scholar 

  9. Poortinga, G. et al. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J. 23, 3325–3335 (2004).

    Article  CAS  Google Scholar 

  10. Schlosser, I. et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 31, 6148–6156 (2003).

    Article  CAS  Google Scholar 

  11. Salghetti, S. E., Kim, S. Y. & Tansey, W. P. Destruction of Myc by ubiquitin-mediated proteolysis: cancer-associated and transforming mutations stabilize Myc. EMBO J. 18, 717–726 (1999).

    Article  CAS  Google Scholar 

  12. Flinn, E. M., Busch, C. M. & Wright, A. P. myc boxes, which are conserved in myc family proteins, are signals for protein degradation via the proteasome. Mol. Cell. Biol. 18, 5961–5969 (1998).

    Article  CAS  Google Scholar 

  13. Kim, S. Y., Herbst, A., Tworkowski, K. A., Salghetti, S. E. & Tansey, W. P. Skp2 regulates Myc protein stability and activity. Mol. Cell 11, 1177–1188 (2003).

    Article  CAS  Google Scholar 

  14. von der Lehr, N. et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol. Cell 11, 1189–1200 (2003).

    Article  CAS  Google Scholar 

  15. Welcker, M. et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc. Natl Acad. Sci. USA 101, 9085–9090 (2004).

    Article  CAS  Google Scholar 

  16. Yada, M. et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23, 2116–2125 (2004).

    Article  CAS  Google Scholar 

  17. Visintin, R. & Amon, A. The nucleolus: the magician's hat for cell cycle tricks. Curr. Opin. Cell Biol. 12, 752 (2000).

    Article  CAS  Google Scholar 

  18. Grinberg, A. V., Hu, C. D. & Kerppola, T. K. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol. Cell. Biol. 24, 4294–4308 (2004).

    Article  CAS  Google Scholar 

  19. O'Sullivan, A. C., Sullivan, G. J. & McStay, B. UBF binding in vivo is not restricted to regulatory sequences within the vertebrate ribosomal DNA repeat. Mol. Cell. Biol. 22, 657–668 (2002).

    Article  CAS  Google Scholar 

  20. Santoro, R., Li, J. & Grummt, I. The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nature Genet. 32, 393–396 (2002).

    Article  CAS  Google Scholar 

  21. Mutskov, V. J., Russanova, V. R., Dimitrov, S. I. & Pashev, I. G. Histones associated with non-nucleosomal rat ribosomal genes are acetylated while those bound to nucleosome-organized gene copies are not. J. Biol. Chem. 271, 11852–11857 (1996).

    Article  CAS  Google Scholar 

  22. Yin, X., Giap, C., Lazo, J. S. & Prochownik, E. V. Low molecular weight inhibitors of Myc-Max interaction and function. Oncogene 22, 6151–6159 (2003).

    Article  CAS  Google Scholar 

  23. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  Google Scholar 

  24. Frank, S. R., Schroeder, M., Fernandez, P., Taubert, S. & Amati, B. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev. 15, 2069–2082 (2001).

    Article  CAS  Google Scholar 

  25. Halkidou, K., Logan, I. R., Cook, S., Neal, D. E. & Robson, C. N. Putative involvement of the histone acetyltransferase Tip60 in ribosomal gene transcription. Nucleic Acids Res. 32, 1654–1665 (2004).

    Article  CAS  Google Scholar 

  26. Koberna, K. et al. Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of “Christmas trees” in situ. J. Cell Biol. 157, 743–748 (2002).

    Article  CAS  Google Scholar 

  27. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

  28. Seither, P. & Grummt, I. Molecular cloning of RPA2, the gene encoding the second largest subunit of mouse RNA polymerase I. Genomics 37, 135–139 (1996).

    Article  CAS  Google Scholar 

  29. Boyd, K. E., Wells, J., Gutman, J., Bartley, S. M. & Farnham, P. J. c-Myc target gene specificity is determined by a post-DNAbinding mechanism. Proc. Natl Acad. Sci. USA 95, 13887–13892 (1998).

    Article  CAS  Google Scholar 

  30. Cheutin, T. et al. Three-dimensional organization of active rRNA genes within the nucleolus. J. Cell Sci. 115, 3297–3307 (2002).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Sylvester for providing the rDNA FISH probe, T. Kerppola for providing the BiFC vectors, A. Tikhonenko for providing the chicken c-Myc vector, M. Eilers for providing the Rat1- and U2OS-MycER cell lines, and B. Edgar, R. Eisenman, C. Grandori and R. White for communicating results prior to publication. We also would like to thank F. Godeau and P. Thuriaux for creative discussions. The work was supported by grants from the Swedish Cancer Society to A.W. and L.-G.L. and from the Swedish Children Cancer Foundation, Agrifungen and the Human Frontier Science Program (HFSP) to L.-G.L. I. G. was supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie. A.W. is a senior investigator supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Arabi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arabi, A., Wu, S., Ridderstråle, K. et al. c-Myc associates with ribosomal DNA and activates RNA polymerase I transcription. Nat Cell Biol 7, 303–310 (2005). https://doi.org/10.1038/ncb1225

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1225

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing