Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphatidylinositol transfer protein-α in netrin-1-induced PLC signalling and neurite outgrowth

Abstract

Neurite extension is essential for wiring the nervous system during development. Although several factors are known to regulate neurite outgrowth, the underlying mechanisms remain unclear. Here, we provide evidence for a role of phosphatidylinositol transfer protein-α (PITPα) in neurite extension in response to netrin-1, an extracellular guidance cue. PITPα interacts with the netrin receptor DCC (deleted in colorectal cancer) and neogenin. Netrin-1 stimulates PITPα binding to DCC and to phosphatidylinositol (5) phosphate [PI(5)P], increases its lipid-transfer activity and elevates hydrolysis of phosphatidylinositol bisphosphate (PIP2). In addition, the stimulated PIP2 hydrolysis requires PITPα. Furthermore, cortical explants of PITPα mutant mice are defective in extending neurites in response to netrin-1. Commissural neurons from chicken embryos expressing a dominant-negative PITPα mutant show reduced axon outgrowth. Morpholino-mediated knockdown of PITPα expression in zebrafish embryos leads to dose-dependent defects in motor-neuron axons and reduced numbers of spinal-cord neurons. Taken together, these results identify a crucial role for PITPα in netrin-1-induced neurite outgrowth, revealing a signalling mechanism for DCC/neogenin and PITPα regulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PITPα interaction with DCC and neogenin.
Figure 2: Netrin-1 stimulation of PI transfer activity of PITPα in a DCC-P3-domain-dependent manner.
Figure 3: PI(5)P regulation of PITPα activity that is required for netrin-1-induced PIP2 hydrolysis.
Figure 4: Requirement of PITPα for netrin-1-induced cortical neurite elongation.
Figure 5: Effects of PITPα in axon outgrowth in chicken and zebrafish embryos.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  2. Chan, S. S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    Article  CAS  Google Scholar 

  3. Kolodziej, P. A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    Article  CAS  Google Scholar 

  4. Hiramoto, M., Hiromi, Y., Giniger, E. & Hotta, Y. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000).

    Article  CAS  Google Scholar 

  5. Ren, X. R. et al. Focal adhesion kinase in netrin-1 signaling. Nature Neurosci. 7, 1204–1212 (2004).

    Article  CAS  Google Scholar 

  6. Ming, G. et al. Phospholipase C-γ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    Article  CAS  Google Scholar 

  7. Forcet, C. et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 417, 443–447 (2002).

    Article  CAS  Google Scholar 

  8. Li, X., Saint-Cyr-Proulx, E., Aktories, K. & Lamarche-Vane, N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (Deleted in Colorectal Cancer) in N1E-115 neuroblastoma cells. J. Biol. Chem. 277, 15207–15214 (2002).

    Article  CAS  Google Scholar 

  9. Hu, G. et al. Mammalian homologs of seven in absentia regulate DCC via the ubiquitin-proteasome pathway. Genes Dev. 11, 2701–2714 (1997).

    Article  CAS  Google Scholar 

  10. Culotti, J. G. & Merz, D. C. DCC and netrins. Curr. Opin. Cell Biol. 10, 609–613 (1998).

    Article  CAS  Google Scholar 

  11. Kennedy, T. E. Cellular mechanisms of netrin function: long-range and short-range actions. Biochem. Cell Biol. 78, 569–575 (2000).

    Article  CAS  Google Scholar 

  12. Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    Article  CAS  Google Scholar 

  13. Stein, E., Zou, Y., Poo, M. & Tessier-Lavigne, M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291, 1976–1982 (2001).

    Article  CAS  Google Scholar 

  14. Allen-Baume, V., Segui, B. & Cockcroft, S. Current thoughts on the phosphatidylinositol transfer protein family. FEBS Lett. 531, 74–80 (2002).

    Article  CAS  Google Scholar 

  15. Hara, S., Swigart, P., Jones, D. & Cockcroft, S. The first 5 amino acids of the carboxyl terminus of phosphatidylinositol transfer protein (PITP) alpha play a critical role in inositol lipid signaling. Transfer activity of PITP is essential but not sufficient for restoration of phospholipase C signaling. J. Biol. Chem. 272, 14908–14913 (1997).

    Article  CAS  Google Scholar 

  16. Graef, I. A. et al. Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003).

    Article  CAS  Google Scholar 

  17. Brose, K. & Tessier-Lavigne, M. Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Curr. Opin. Neurobiol. 10, 95–102 (2000).

    Article  CAS  Google Scholar 

  18. Finger, J. H. et al. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J. Neurosci. 22, 10346–10356 (2002).

    Article  CAS  Google Scholar 

  19. Schouten, A. et al. Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J. 21, 2117–2121 (2002).

    Article  CAS  Google Scholar 

  20. Yoder, M. D. et al. Structure of a multifunctional protein. Mammalian phosphatidylinositol transfer protein complexed with phosphatidylcholine. J. Biol. Chem. 276, 9246–9252 (2001).

    Article  CAS  Google Scholar 

  21. Wang, Q. et al. Regulation of the formation of osteoclastic actin rings by proline-rich tyrosine kinase 2 interacting with gelsolin. J. Cell Biol. 160, 565–575 (2003).

    Article  CAS  Google Scholar 

  22. Van Paridon, P. A., Gadella, T. W. Jr & Wirtz, K. W. The effect of polyphosphoinositides and phosphatidic acid on the phosphatidylinositol transfer protein from bovine brain: a kinetic study. Biochim. Biophys. Acta 943, 76–86 (1988).

    Article  CAS  Google Scholar 

  23. Hamilton, B. A. et al. The vibrator mutation causes neurodegeneration via reduced expression of PITPα: positional complementation cloning and extragenic suppression. Neuron 18, 711–722 (1997).

    Article  CAS  Google Scholar 

  24. Metin, C., Deleglise, D., Serafini, T., Kennedy, T. E. & Tessier-Lavigne, M. A role for netrin-1 in the guidance of cortical efferents. Development 124, 5063–5074 (1997).

    CAS  PubMed  Google Scholar 

  25. Braisted, J. E. et al. Netrin-1 promotes thalamic axon growth and is required for proper development of the thalamocortical projection. J. Neurosci. 20, 5792–5801 (2000).

    Article  CAS  Google Scholar 

  26. Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  27. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  Google Scholar 

  28. Mawdsley, D. J. et al. The Netrin receptor Neogenin is required for neural tube formation and somitogenesis in zebrafish. Dev. Biol. 269, 302–315 (2004).

    Article  CAS  Google Scholar 

  29. Morgan, C. P. et al. Phosphorylation of a distinct structural form of PITP at Ser166 by protein kinase C disrupts receptor-mediated phospholipase C signalling by inhibiting delivery of phosphatidylinositol to membranes. J. Biol. Chem. 279, 47159–47171 (2004).

    Article  CAS  Google Scholar 

  30. Takei, K., Shin, R. M., Inoue, T., Kato, K. & Mikoshiba, K. Regulation of nerve growth mediated by inositol 1,4,5-trisphosphate receptors in growth cones. Science 282, 1705–1708 (1998).

    Article  CAS  Google Scholar 

  31. Li, H. S. et al. Vertebrate slit, a secreted ligand for the transmembrane protein roundabout, is a repellent for olfactory bulb axons. Cell 96, 807–818 (1999).

    Article  CAS  Google Scholar 

  32. Ren, X. R. et al. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J. Cell Biol. 152, 971–984 (2001).

    Article  CAS  Google Scholar 

  33. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  34. Richards, L. J., Koester, S. E., Tuttle, R. & O'Leary, D. D. Directed growth of early cortical axons is influenced by a chemoattractant released from an intermediate target. J. Neurosci. 17, 2445–2458 (1997).

    Article  CAS  Google Scholar 

  35. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Drs B.A. Hamilton (University of California at San Diego), B. Vogelstein (Johns Hopkins Medical School), M. Tessier-Lavigne, (Stanford University), J.Y. Wu and Y. Rao (Washington University) for reagents. We thank Dr R.-B. Markowitz (Medical College of Georgia) for reading the manuscript. This study was supported by grants from the National Institutes of Health (NS35900 for S.L.A.; DC006140 for D.K.; NS40480, NS045710 and NS44521 for L.M.; GM63861 and AR48120 for W.-C.X.; and the Philip Morris Research Program and Muscular Dystrophy Association for L.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Cheng Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary figures S1, S2 and S3 (PDF 382 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Y., Ding, YQ., Hong, Y. et al. Phosphatidylinositol transfer protein-α in netrin-1-induced PLC signalling and neurite outgrowth. Nat Cell Biol 7, 1124–1132 (2005). https://doi.org/10.1038/ncb1321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing