Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abi activates WASP to promote sensory organ development

Abstract

Actin polymerization is a key process for many cellular events during development. To a large extent, the formation of filamentous actin is controlled by the WASP and WAVE proteins that activate the Arp2/3 complex in different developmental processes1,2,3. WAVE function is regulated through a protein complex containing Sra1, Kette and Abi. Using biochemical, cell biological and genetic tools, we show here that the Abi protein also has a central role in activating WASP-mediated processes. Abi binds WASP through its carboxy-terminal domain and acts as a potent stimulator of WASP-dependent F-actin formation. To elucidate the biological function of abi in Drosophila melanogaster, we studied bristle development, a process known to require wasp function4. Reduction of abi function leads to a loss of bristles similar to that observed in wasp mutants. Activation of Abi results in the formation of ectopic bristles, a phenotype that is suppressed by a reduction of wasp activity but is not affected by the reduction of wave function. Thus, in vivo Abi may set the balance between WASP and WAVE in different actin-based developmental processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Abi protein (Mr 52K) simultaneously binds WASP and WAVE.
Figure 2: Abi is able to induce filopodia-like structures in S2R+ cells.
Figure 3: Abi-induced structures are dynamic.
Figure 4: Abi induces F-actin via WASP in vivo and in vitro.
Figure 5: Abi regulates bristle formation depending on wasp function.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Miki, H. & Takenawa, T. Regulation of actin dynamics by WASP family proteins. J Biochem (Tokyo) 134, 309–313 (2003).

    Article  CAS  Google Scholar 

  2. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  3. Vartiainen, M. K. & Machesky, L. M. The WASP-Arp2/3 pathway: genetic insights. Curr. Opin. Cell Biol. 16, 174–181 (2004).

    Article  CAS  Google Scholar 

  4. Ben-Yaacov, S., Le Borgne, R., Abramson, I., Schweisguth, F. & Schejter, E. D. Wasp, the Drosophila Wiskott-Aldrich syndrome gene homologue, is required for cell fate decisions mediated by Notch signaling. J. Cell Biol. 152, 1–13 (2001).

    Article  CAS  Google Scholar 

  5. Cooper, J. A., Wear, M. A. & Weaver, A. M. Arp2/3 complex: advances on the inner workings of a molecular machine. Cell 107, 703–705 (2001).

    Article  CAS  Google Scholar 

  6. Takenawa, T. & Miki, H. WASP and WAVE family proteins: key molecules for rapid rearrangement of cortical actin filaments and cell movement. J. Cell Sci. 114, 1801–1809 (2001).

    CAS  PubMed  Google Scholar 

  7. Steffen, A. et al. Sra-1 and Nap1 link Rac to actin assembly driving lamellipodia formation. EMBO J. 23, 749–759 (2004).

    Article  CAS  Google Scholar 

  8. Zallen, J. A. et al. SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila. J. Cell Biol. 156, 689–701 (2002).

    Article  CAS  Google Scholar 

  9. Tal, T., Vaizel-Ohayon, D. & Schejter, E. D. Conserved interactions with cytoskeletal but not signaling elements are an essential aspect of Drosophila WASp function. Dev. Biol. 243, 260–271 (2002).

    Article  CAS  Google Scholar 

  10. Kowalski, J. R. et al. Cortactin regulates cell migration through activation of N-WASP. J. Cell Sci. 118, 79–87 (2005).

    Article  CAS  Google Scholar 

  11. Kempiak, S. J. et al. A neural Wiskott-Aldrich Syndrome protein-mediated pathway for localized activation of actin polymerization that is regulated by cortactin. J. Biol. Chem. 280, 5836–5842 (2005).

    Article  CAS  Google Scholar 

  12. Higgs, H. N. & Pollard, T. D. Regulation of actin filament network formation through ARP2/3 complex: activation by a diverse array of proteins. Annu. Rev. Biochem. 70, 649–676 (2001).

    Article  CAS  Google Scholar 

  13. Fukuoka, M. et al. A novel neural Wiskott-Aldrich syndrome protein (N-WASP) binding protein, WISH, induces Arp2/3 complex activation independent of Cdc42. J. Cell Biol. 152, 471–482 (2001).

    Article  CAS  Google Scholar 

  14. Miki, H., Suetsugu, S. & Takenawa, T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J. 17, 6932–6941 (1998).

    Article  CAS  Google Scholar 

  15. Machesky, L. M. et al. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc. Natl Acad. Sci. USA 96, 3739–3744 (1999).

    Article  CAS  Google Scholar 

  16. Eden, S., Rohatgi, R., Podtelejnikov, A. V., Mann, M. & Kirschner, M. W. Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418, 790–793 (2002).

    Article  CAS  Google Scholar 

  17. Innocenti, M. et al. Abi1 is essential for the formation and activation of a WAVE2 signalling complex. Nature Cell Biol. 6, 319–327 (2004).

    Article  CAS  Google Scholar 

  18. Blagg, S. L., Stewart, M., Sambles, C. & Insall, R. H. PIR121 regulates pseudopod dynamics and SCAR activity in Dictyostelium. Curr. Biol. 13, 1480–1487 (2003).

    Article  CAS  Google Scholar 

  19. Bogdan, S. & Klambt, C. Kette regulates actin dynamics and genetically interacts with Wave and Wasp. Development 130, 4427–4437 (2003).

    Article  CAS  Google Scholar 

  20. Bogdan, S., Grewe, O., Strunk, M., Mertens, A. & Klambt, C. Sra-1 interacts with Kette and Wasp and is required for neuronal and bristle development in Drosophila. Development 131, 3981–3989 (2004).

    Article  CAS  Google Scholar 

  21. Juang, J. L. & Hoffmann, F. M. Drosophila abelson interacting protein (dAbi) is a positive regulator of abelson tyrosine kinase activity. Oncogene 18, 5138–5147 (1999).

    Article  CAS  Google Scholar 

  22. Echarri, A., Lai, M. J., Robinson, M. R. & Pendergast, A. M. Abl interactor 1 (Abi-1) wave-binding and SNARE domains regulate its nucleocytoplasmic shuttling, lamellipodium localization, and wave-1 levels. Mol. Cell. Biol 24, 4979–4993 (2004).

    Article  CAS  Google Scholar 

  23. Gautreau, A. et al. Purification and architecture of the ubiquitous Wave complex. Proc. Natl Acad. Sci. USA 101, 4379–4383 (2004).

    Article  CAS  Google Scholar 

  24. Nakagawa, H. et al. N-WASP, WAVE and Mena play different roles in the organization of actin cytoskeleton in lamellipodia. J. Cell Sci. 114, 1555–1565 (2001).

    CAS  PubMed  Google Scholar 

  25. Kawamura, K. et al. N-WASP and WAVE2 acting downstream of phosphatidylinositol 3-kinase are required for myogenic cell migration induced by hepatocyte growth factor. J. Biol. Chem. 279, 54862–54871 (2004).

    Article  CAS  Google Scholar 

  26. Kunda, P., Craig, G., Dominguez, V. & Baum, B. Abi, Sra1, and Kette control the stability and localization of SCAR/WAVE to regulate the formation of actin-based protrusions. Curr. Biol. 13, 1867–1875 (2003).

    Article  CAS  Google Scholar 

  27. Biyasheva, A., Svitkina, T., Kunda, P., Baum, B. & Borisy, G. Cascade pathway of filopodia formation downstream of SCAR. J. Cell Sci. 117, 837–848 (2004).

    Article  CAS  Google Scholar 

  28. Yamaguchi, H. et al. Molecular mechanisms of invadopodium formation: the role of the N-WASP-Arp2/3 complex pathway and cofilin. J. Cell Biol. 168, 441–452 (2005).

    Article  CAS  Google Scholar 

  29. Mejillano, M. R. et al. Lamellipodial versus filopodial mode of the actin nanomachinery: pivotal role of the filament barbed end. Cell 118, 363–373 (2004).

    Article  CAS  Google Scholar 

  30. Schweisguth, F. Notch signaling activity. Curr. Biol. 14, R129–R138 (2004).

    Article  CAS  Google Scholar 

  31. Culi, J., Martin-Blanco, E. & Modolell, J. The EGF receptor and N signalling pathways act antagonistically in Drosophila mesothorax bristle patterning. Development 128, 299–308 (2001).

    CAS  Google Scholar 

  32. Hasson, P. et al. EGFR signaling attenuates Groucho-dependent repression to antagonize Notch transcriptional output. Nature Genet. 37, 101–105 (2005).

    Article  CAS  Google Scholar 

  33. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  34. Miki, H., Yamaguchi, H., Suetsugu, S. & Takenawa, T. IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408, 732–735 (2000).

    Article  CAS  Google Scholar 

  35. Pielage, J., Stork, T., Bunse, I. & Klambt, C. The Drosophila cell survival gene discs lost encodes a cytoplasmic Codanin-1-like protein, not a homolog of tight junction PDZ protein Patj. Dev. Cell 5, 841–851 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Schejter for generously sending materials (scark13811, scarΔ37, wasp3, wasp1 mutants and UAS-waspΔCA flies), J. Zallen and G. Borisy for sending anti-WAVE and anti-WASP antibodies, G. Scita for sharing and discussing results prior to publication, S. Wenderdel for excellent technical assistance, S. Call for purified His-tagged WAVE protein, A. Püschel, V. Gerke and T. Hummel for helpful discussions and comments on the manuscript, and members of the Klämbt laboratory for help throughout the project. This work was funded through a grant of the DFG and the EC (MAIN initiative).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Klämbt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bogdan, S., Stephan, R., Löbke, C. et al. Abi activates WASP to promote sensory organ development. Nat Cell Biol 7, 977–984 (2005). https://doi.org/10.1038/ncb1305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1305

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing