Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage

Abstract

The transcription factor Miz1 is required for DNA-damage-induced cell-cycle arrest. We have now identified 14-3-3η as a gene that inhibits Miz1 function through interaction with its DNA binding domain. Binding of 14-3-3η to Miz1 depends on phosphorylation by Akt and regulates the recovery of cells from arrest after DNA damage. Miz1 has two functions in response to DNA damage: first, it is required for upregulation of a large group of genes, a function that is regulated by c-Myc, but not by 14-3-3η; second, Miz1 represses the expression of many genes in response to DNA damage in an Akt- and 14-3-3η-regulated manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Miz1 is required for DNA-damage-induced cell-cycle arrest in both rodent and human cells.
Figure 2: Identification of genes that regulate Miz1 function.
Figure 3: 14-3-3η is a negative regulator of Miz1.
Figure 4: 14-3-3η binds to Miz1 and inhibits binding of Miz1 to DNA.
Figure 5: Akt phosphorylates Miz1 at Ser 428 in vitro.
Figure 6: Phosphorylation of Miz1 by Akt in vivo.
Figure 7: Cells expressing Miz1S428A are hypersensitive to DNA damage.
Figure 8: 14-3-3η and Miz1 coordinately regulate gene expression after DNA damage in a PI3K-dependent manner.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Bartek, J. & Lukas, J. Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr. Opin. Cell Biol. 13, 738–747 (2001).

    Article  CAS  Google Scholar 

  2. Macleod, K. F. et al. p53-dependent and independent expression of p21 during cell growth, differentiation, and DNA damage. Genes Dev. 9, 935–944 (1995).

    Article  CAS  Google Scholar 

  3. Levens, D. L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).

    Article  CAS  Google Scholar 

  4. Claassen, G. F. & Hann, S. R. A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor b-induced cell-cycle arrest. Proc. Natl Acad. Sci. USA 97, 9498–9503 (2000).

    Article  CAS  Google Scholar 

  5. Gartel, A. L. et al. Myc represses the p21WAF1/CIP1 promoter and interacts with Sp1/Sp3. Proc. Natl Acad. Sci. USA 98, 4510–4515 (2001).

    Article  CAS  Google Scholar 

  6. Sheen, J. H. & Dickson, R. B. Overexpression of c-Myc alters G1/S arrest following ionizing radiation. Mol. Cell Biol. 22, 1819–1833 (2002).

    Article  CAS  Google Scholar 

  7. Wu, S. et al. Myc represses differentiation-induced p21CIP1 expression via Miz1-dependent interaction with the p21 core promoter. Oncogene 22, 351–360 (2003).

    Article  CAS  Google Scholar 

  8. Herold, S. et al. Negative regulation of the mammalian UV response by Myc through association with Miz1. Mol. Cell. 10, 509–521 (2002).

    Article  CAS  Google Scholar 

  9. Seoane, J., Le, H. V. & Massague, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    Article  CAS  Google Scholar 

  10. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

  11. Staller, P. et al. Repression of p15INK4b expression by Myc through association with Miz1. Nature Cell Biol. 3, 392–399 (2001).

    Article  CAS  Google Scholar 

  12. Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    Article  CAS  Google Scholar 

  13. Dyson, N., Howley, P. M., Munger, K. & Harlow, E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243, 934–937 (1989).

    Article  CAS  Google Scholar 

  14. Funk, J. O. et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev. 11, 2090–2100 (1997).

    Article  CAS  Google Scholar 

  15. Ichimura, T. et al. Molecular cloning of cDNA coding for brain-specific 14–3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc. Natl Acad. Sci. USA 85, 7084–7088 (1988).

    Article  CAS  Google Scholar 

  16. Rittinger, K. et al. Structural analysis of 14–3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14–3-3 in ligand binding. Mol. Cell 4, 153–166 (1999).

    Article  CAS  Google Scholar 

  17. Masuyama, N. et al. Akt inhibits the orphan nuclear receptor Nur77 and T-cell apoptosis. J. Biol. Chem. 276, 32799–32805 (2001).

    Article  CAS  Google Scholar 

  18. Brunet, A. et al. 14–3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–828 (2002).

    Article  CAS  Google Scholar 

  19. Obata, T. et al. Peptide and protein library screening defines optimal substrate motifs for AKT/PKB. J. Biol. Chem. 275, 36108–36115 (2000).

    Article  CAS  Google Scholar 

  20. Mayo, L. D. & Donner, D. B. A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc. Natl Acad. Sci. USA 98, 11598–11603 (2001).

    Article  CAS  Google Scholar 

  21. Zhou, B. P. et al. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nature Cell Biol. 3, 973–982 (2001).

    Article  CAS  Google Scholar 

  22. Gottlieb, T. M., Leal, J. F., Seger, R., Taya, Y. & Oren, M. Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299–1303 (2002).

    Article  CAS  Google Scholar 

  23. Basu, S., Totty, N. F., Irwin, M. S., Sudol, M. & Downward, J. Akt phosphorylates the Yes-associated protein, YAP, to induce interaction with 14–3-3 and attenuation of p73-mediated apoptosis. Mol. Cell 11, 11–23 (2003).

    Article  CAS  Google Scholar 

  24. Eapen, A. K., Henry, M. K., Quelle, D. E. & Quelle, F. W. DNA damage-induced G1 arrest in hematopoietic cells is overridden following phosphatidylinositol 3-kinase-dependent activation of cyclin-dependent kinase 2. Mol. Cell. Biol. 21, 6113–6121 (2001).

    Article  CAS  Google Scholar 

  25. Brummelkamp, T. R. et al. TBX-3, the gene mutated in Ulnar-Mammary Syndrome, is a negative regulator of p19ARF and inhibits senescence. J. Biol. Chem. 277, 6567–6572 (2002).

    Article  CAS  Google Scholar 

  26. Cheyette, B. N. et al. Dapper, a Dishevelled-associated antagonist of β-catenin and JNK signaling, is required for notochord formation. Dev Cell 2, 449–61 (2002).

    Article  CAS  Google Scholar 

  27. Glaeser, M., Floetotto, T., Hanstein, B., Beckmann, M. W. & Niederacher, D. Gene amplification and expression of the steroid receptor coactivator SRC3 (AIB1) in sporadic breast and endometrial carcinomas. Horm. Metab. Res. 33, 121–126 (2001).

    Article  CAS  Google Scholar 

  28. Teng, S. C. et al. Direct activation of HSP90A by c-MYC contributes to c-MYC induced transformation. J. Biol. Chem. 279, 14649–14655 (2004).

    Article  CAS  Google Scholar 

  29. Itoh, K. et al. Human tumor rejection antigens MAGE. J. Biochem. (Tokyo) 119, 385–390 (1996).

    Article  CAS  Google Scholar 

  30. Su, Y. A., Hutter, C. M., Trent, J. M. & Meltzer, P. S. Complete sequence analysis of a gene (OS-9) ubiquitously expressed in human tissues and amplified in sarcomas. Mol. Carcinog. 15, 270–275 (1996).

    Article  CAS  Google Scholar 

  31. Mollinari, C. et al. The mammalian passenger protein TD-60 is an RCC1 family member with an essential role in prometaphase to metaphase progression. Dev. Cell 5, 295–307 (2003).

    Article  CAS  Google Scholar 

  32. Player, A. et al. Identification of TDE2 gene and its expression in non-small cell lung cancer. Int. J. Cancer 107, 238–243 (2003).

    Article  CAS  Google Scholar 

  33. el-Ghorr, A. A., Norval, M., Lappin, M. B. & Crosby, J. C. The effect of chronic low-dose UVB radiation on Langerhans cells, sunburn cells, urocanic acid isomers, contact hypersensitivity and serum immunoglobulins in mice. Photochem. Photobiol. 62, 326–332 (1995).

    Article  CAS  Google Scholar 

  34. Peukert, K. et al. An alternative pathway for gene regulation by Myc. EMBO J. 16, 5672–5686 (1997).

    Article  CAS  Google Scholar 

  35. Berns, K., Hijmans, E. M., Koh, E., Daley, G. Q. & Bernards, R. A genetic screen to identify genes that rescue the slow growth phenotype of c-myc null fibroblasts. Oncogene 19, 3330–3334 (2000).

    Article  CAS  Google Scholar 

  36. Zeng, Y., Somasundaram, K. & el-Deiry, W. S. APC2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nature Genet. 15, 78–82 (1997).

    Article  CAS  Google Scholar 

  37. Du, H., Roy, A. L., & Roeder, R. G. Human transcription factor USF stimulates transcription through the initiator elements of the HIV-1 and the Ad-ML promoters. EMBO J. 12, 501–551 (1993).

    Article  CAS  Google Scholar 

  38. Bouchard, C. et al. Regulation of cyclin D2 gene expression by the Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone acetylation at the cyclin D2 promoter. Genes Dev. 15, 2042–2047 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Forschungsgemeinschaft, The European Union and the Thyssen-Stiftung to M.E. We thank B. Jebavy and M. Neuhaus for expert technical assistance, M. Krause (MPI for Biochemistry, Munich) and B. Samans (Phillips University, Marburg) for performing and evaluating the microarray experiments, H. Hermeking and J. Daut for the gift of reagents and J. Downward (Cancer Research UK, London) for help with the analysis of phosphorylation sites on Miz1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Eilers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Fig S1, Fig S2, Table 1, Table 2 (PDF 420 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanzel, M., Kleine-Kohlbrecher, D., Herold, S. et al. Akt and 14-3-3η regulate Miz1 to control cell-cycle arrest after DNA damage. Nat Cell Biol 7, 30–41 (2005). https://doi.org/10.1038/ncb1202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1202

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing