Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons

Abstract

The cytoskeleton controls the architecture and survival of central nervous system (CNS) neurons by maintaining the stability of axons and dendrites. Although neurofilaments (NFs) constitute the main cytoskeletal network in these structures, the mechanism that underlies subunit incorporation into filaments remains a mystery. Here we report that NUDEL, a mammalian homologue of the Aspergillus nidulans nuclear distribution molecule NudE, is important for NF assembly, transport and neuronal integrity. NUDEL facilitates the polymerization of NFs through a direct interaction with the NF light subunit (NF-L). Knockdown of NUDEL by RNA interference (RNAi) in a neuroblastoma cell line, primary cortical neurons or post-natal mouse brain destabilizes NF-L and alters the homeostasis of NFs. This results in NF abnormalities and morphological changes reminiscent of neurodegeneration. Furthermore, variations in levels of NUDEL correlate with disease progression and NF defects in a mouse model of neurodegeneration. Thus, NUDEL contributes to the integrity of CNS neurons by regulating NF assembly.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NUDEL interacts directly with NF-L and indirectly with NF-H.
Figure 2: NUDEL associates with NF structures in vivo.
Figure 5: Genetic knockdown of NUDEL in primary cortical neurons causes cell-shape abnormalities.
Figure 3: NUDEL facilitates NF polymerization in vitro, but does not form polymers with NF proteins.
Figure 4: Silencing expression of NUDEL in CAD cells causes NF abnormalities.
Figure 6: Genetic knockdown of NUDEL in the post-natal mouse brain disrupts NF homeostasis.
Figure 7: Downregulation of NUDEL coincides with NF defects during in vivo neurodegeneration.
Figure 8: Roles for NUDEL in the biology of NFs and neuronal integrity.

Similar content being viewed by others

References

  1. Morris, J.A., Kandpal, G., Ma, L. & Austin, C.P. DISC1 (disrupted in schizophrenia 1) is a centrosome-associated protein that interacts with MAP1A, MIPT3, ATF4/5 and NUDEL: regulation and loss of interaction with mutation. Hum. Mol. Genet. 12, 1591–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Niethammer, M. et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 28, 697–711 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Sasaki, S. et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 28, 681–696 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Smith, D.S. et al. Regulation of cytoplasmic dynein behaviour and microtubule organization by mammalian Lis1. Nature Cell Biol. 2, 767–775 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Toyo-oka, K. et al. 14–3-3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome. Nature Genet. 34, 274–285 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Fuchs, E. & Cleveland, D.W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Julien, J.P. Neurofilament functions in health and disease. Curr. Opin. Neurobiol. 9, 554–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Julien, J.P. & Mushynski, W.E. Neurofilaments in health and disease. Prog. Nucleic Acid Res. Mol. Biol. 61, 1–23 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Lariviere, R.C. & Julien, J.P. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58, 131–48 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lee, M.K. & Cleveland, D.W. Neuronal intermediate filaments. Annu. Rev. Neurosci. 19, 187–217 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kost, S.A., Chacko, K. & Oblinger, M.M. Developmental patterns of intermediate filament gene expression in the normal hamster brain. Brain Res. 595, 270–280 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Schlaepfer, W.W. & Bruce, J. Simultaneous up-regulation of neurofilament proteins during the postnatal development of the rat nervous system. J. Neurosci. Res. 25, 39–49 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Zhu, Q., Couillard-Despres, S. & Julien, J.P. Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp. Neurol. 148, 299–316 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Bennett, G.S. & DiLullo, C. Slow post-translational modification of a neurofilament protein. J. Cell Biol. 100, 1799–1804 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Black, M.M., Keyser, P. & Sobel, E. Interval between the synthesis and assembly of cytoskeletal proteins in cultured neurons. J. Neurosci. 6, 1004–1012 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Rao, M.V. et al. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J. Cell Biol. 159, 279–290 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Roy, S. et al. Neurofilaments are transported rapidly but intermittently in axons: implications for slow axonal transport. J. Neurosci. 20, 6849–6861 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shah, J.V., Flanagan, L.A., Janmey, P.A. & Leterrier, J.F. Bidirectional translocation of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell 11, 3495–3508 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, L., Ho, C.L., Sun, D., Liem, R.K. & Brown, A. Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nature Cell Biol. 2, 137–141 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Yabe, J.T., Pimenta, A. & Shea, T.B. Kinesin-mediated transport of neurofilament protein oligomers in growing axons. J. Cell Sci. 112, 3799–3814 (1999).

    CAS  PubMed  Google Scholar 

  21. Helfand, B.T., Chang, L. & Goldman, R.D. The dynamic and motile properties of intermediate filaments. Annu. Rev. Cell Dev. Biol. 19, 445–467 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Helfand, B.T., Chang, L. & Goldman, R.D. Intermediate filaments are dynamic and motile elements of cellular architecture. J. Cell Sci. 117, 133–141 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Jung, C., Yabe, J., Wang, F.S. & Shea, T.B. Neurofilament subunits can undergo axonal transport without incorporation into Triton-insoluble structures. Cell. Motil. Cytoskeleton 40, 44–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Julien, J.P. & Mushynski, W.E. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J. Biol. Chem. 258, 4019–4025 (1983).

    CAS  PubMed  Google Scholar 

  25. Beaulieu, J.M., Jacomy, H. & Julien, J.P. Formation of intermediate filament protein aggregates with disparate effects in two transgenic mouse models lacking the neurofilament light subunit. J. Neurosci. 20, 5321–5328 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Beaulieu, J.M., Robertson, J. & Julien, J.P. Interactions between peripherin and neurofilaments in cultured cells: disruption of peripherin assembly by the NF-M and NF-H subunits. Biochem. Cell Biol. 77, 41–45 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, M.K., Xu, Z., Wong, P.C. & Cleveland, D.W. Neurofilaments are obligate heteropolymers in vivo. J. Cell Biol. 122, 1337–1250 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Fujita, Y., Okamoto, K., Sakurai, A., Gonatas, N.K. & Hirano, A. Fragmentation of the Golgi apparatus of the anterior horn cells in patients with familial amyotrophic lateral sclerosis with SOD1 mutations and posterior column involvement. J. Neurol. Sci. 174, 137–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Helfand, B.T., Mendez, M.G., Pugh, J., Delsert, C. & Goldman, R.D. A role for intermediate filaments in determining and maintaining the shape of nerve cells. Mol. Biol. Cell 14, 5069–5081 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie, Z., Sanada, K., Samuels, B.A., Shih, H. & Tsai, L.H. Serine-732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Julien, J.P. Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell 104, 581–591 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen, M.D., Lariviere, R.C. & Julien, J.P. Deregulation of Cdk5 in a mouse model of ALS: toxicity alleviated by perikaryal neurofilament inclusions. Neuron 30, 135–147 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Couillard-Despres, S. et al. Protective effect of neurofilament-heavy-gene overexpression in motor neuron disease induced by mutant superoxide dismutase. Proc. Natl Acad. Sci. USA 95, 9626–9630 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hirokawa, N., Glicksman, M.A. & Willard, M.B. Organization of mammalian neurofilament polypeptides within the neuronal cytoskeleton. J. Cell Biol. 98, 1523–1536 (1984).

    Article  CAS  PubMed  Google Scholar 

  35. Hisanaga, S. & Hirokawa, N. Structure of the peripheral domains of neurofilaments revealed by low angle rotary shadowing. J. Mol. Biol. 202, 297–305 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. Yuan, A., Rao, M.V., Kumar, A., Julien, J.P. & Nixon, R.A. Neurofilament transport in vivo minimally requires hetero-oligomer formation. J. Neurosci. 23, 9452–9458 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carpenter, S. Proximal axonal enlargement in motor neuron disease. Neurology 18, 841–851 (1968).

    Article  CAS  PubMed  Google Scholar 

  38. Rouleau, G.A. et al. SOD1 mutation is associated with accumulation of neurofilaments in amyotrophic lateral sclerosis. Ann. Neurol. 39, 128–131 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Schmidt, M.L. et al. Epitope map of neurofilament protein domains in cortical and peripheral nervous system Lewy bodies. Am. J. Pathol. 139, 53–65 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bergeron, C. et al. Neurofilament-light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J. Neuropathol. Exp. Neurol. 53, 221–230 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Hill, W.D., Arai, M., Cohen, J.A. & Trojanowski, J.Q. Neurofilament mRNA is reduced in Parkinson's disease substantia nigra pars compacta neurons. J. Comp. Neurol. 329, 328–336 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. McLachlan, D.R., Lukiw, W.J., Wong, L., Bergeron, C. & Bech-Hansen, N.T. Selective messenger RNA reduction in Alzheimer's disease. Brain Res. 427, 255–261 (1988).

    CAS  PubMed  Google Scholar 

  43. Menzies, F.M. et al. Selective loss of neurofilament expression in Cu/Zn superoxide dismutase (SOD1) linked amyotrophic lateral sclerosis. J. Neurochem. 82, 1118–1128 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Morrison, B.M., Shu, I.W., Wilcox, A.L., Gordon, J.W. & Morrison, J.H. Early and selective pathology of light-chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp. Neurol. 165, 207–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Kong, J. & Xu, Z. Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci. Lett. 281, 72–74 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Sui, G., Soohoo, C., Affar el, B., Gay, F., Shi, Y. & Forrester, W.C. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl Acad. Sci. USA 99, 5515–5520 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong, P.C. et al. An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar-degeneration of mitochondria. Neuron 14, 1105–1116 (1995).

    Article  CAS  PubMed  Google Scholar 

  48. Lariviere, R.C., Beaulieu, J.M., Nguyen, M.D. & Julien, J.P. Peripherin is not a contributing factor to motor neuron disease in a mouse model of amyotrophic lateral sclerosis caused by mutant superoxide dismutase. Neurobiol. Dis. 13, 158–166 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The technical help of P. Hince, S. Millecamps and M. Ericsson is gratefully acknowledged. We are grateful to J. Robertson for the CMV–NF-L and CMV–NF-H plasmids; M. Elhers and R. Huganir for the pC86–NF-L–rod plasmid; T. Shea for the NF-M–GFP plasmid; A. Musacchio for purified NUDEL-CC; D.L. Price and D.W. Cleveland for the kind gift of SOD1G37R mice (line 29); J. Colhberg and U. Aebi for helpful advice on NF polymerization; Z. Xie and R. Ayala for discussions; and M.-T. A. Nguyen, L. Moy, J. Cruz and B. Samuels for critical reading of the manuscript. This work was supported by grants from the National Institutes of Health (for J.-P.J. and L.-H.T.) and the Howard Hughes Medical Institute (for L.-H. T.) M.D.N. held a KM Hunter/Canadian Institute of Health Research PhD scholarship and is a recipient of a long-term fellowship from the Human Frontier Science Program Organization. K.S. holds a Japan Society for the Promotion of Science postdoctoral fellowship for research abroad. R.L. was a recipient of a PhD scholarship from the Fonds de la Recherche de la Santé du Québec. S.-K.P. is a fellow of the Taplin Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minh Dang Nguyen or Li-Huei Tsai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

Fig. S1, Fig. S2, Fig. S3, Fig. S4, Fig. S5. (PDF 888 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, M., Shu, T., Sanada, K. et al. A NUDEL-dependent mechanism of neurofilament assembly regulates the integrity of CNS neurons. Nat Cell Biol 6, 595–608 (2004). https://doi.org/10.1038/ncb1139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing