Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Minimal nuclear pore complexes define FG repeat domains essential for transport

Abstract

Translocation through nuclear pore complexes (NPCs) requires interactions between receptor–cargo complexes and phenylalanine-glycine (FG) repeats in multiple FG domain-containing NPC proteins (FG-Nups). We have systematically deleted the FG domains of 11 Saccharomyces cerevisiae FG-Nups in various combinations. All five asymmetrically localized FG domains deleted together were non-essential. However, specific combinations of symmetrically localized FG domains were essential. Over half the total mass of FG domains could be deleted without loss of viability or the NPC's normal permeability barrier. Significantly, symmetric deletions caused mild reductions in Kap95–Kap60-mediated import rates, but virtually abolished Kap104 import. These results suggest the existence of multiple translocation pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific symmetric FG domains are essential, asymmetric FG domains are not required.
Figure 2: Analysis of cNLS–GFP, NLS-NES–GFP2 and histone H2B1–GFP transport in FGΔ mutants.
Figure 4: Defects in Pho4-NLS and Spo12-NLS import correlate with defects in sporulation.
Figure 3: Nab2 import is severely inhibited in symmetric FGΔ mutants.
Figure 5: There is no correlation between viability and the mass of FG domains deleted.
Figure 6: Minimal NPCs require FG domains in two specific Nup sub-complexes.

Similar content being viewed by others

References

  1. Macara, I.G. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570–594 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stoffler, D., Fahrenkrog, B. & Aebi, U. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11, 391–401 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Rout, M.P. et al. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148, 635–651 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cronshaw, J.M., Krutchinsky, A.N., Zhang, W., Chait, B.T. & Matunis, M.J. Proteomic analysis of the mammalian nuclear pore complex. J. Cell Biol. 158, 915–927 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Weis, K. Regulating Access to the Genome. Nucleocytoplasmic transport throughout the cell cycle. Cell 112, 441–451 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Bayliss, R., Littlewood, T. & Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 102, 99–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Bayliss, R. et al. Interaction between NTF2 and xFxFG-containing nucleoporins is required to mediate nuclear import of RanGDP. J. Mol. Biol. 293, 579–593 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Strasser, K., Bassler, J. & Hurt, E. Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J. Cell Biol. 150, 695–706 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strawn, L.A., Shen, T. & Wente, S.R. The GLFG regions of Nup116p and Nup100p serve as binding sites for both Kap95p and Mex67p at the nuclear pore complex. J. Biol. Chem. 276, 6445–6452 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Allen, N.P., Huang, L., Burlingame, A. & Rexach, M. Proteomic analysis of nucleoporin interacting proteins. J. Biol. Chem. 276, 29268–29274 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Allen, N.P. et al. Deciphering networks of protein interactions at the nuclear pore complex. Mol. Cell. Proteomics 1, 930–946 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Ryan, K.J. & Wente, S.R. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12, 361–371 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Ben-Efraim, I. & Gerace, L. Gradient of increasing affinity of importin β for nucleoporins along the pathway of nuclear import. J. Cell Biol. 152, 411–417 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rout, M.P., Aitchison, J.D., Magnasco, M.O. & Chait, B.T. Virtual gating and nuclear transport: the hole picture. Trends Cell Biol. 13, 622–628 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Ribbeck, K. & Gorlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20, 1320–1330 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fabre, E., Schlaich, N.L. & Hurt, E.C. Nucleocytoplasmic trafficking: what role for repeated motifs in nucleoporins? Cold Spring Harb. Symp. Quant. Biol. 60, 677–685 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Iovine, M.K. & Wente, S.R. A nuclear export signal in Kap95p is required for both recycling the import factor and interaction with the nucleoporin GLFG repeat regions of Nup116p and Nup100p. J. Cell Biol. 137, 797–811 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rout, M.P. & Wente, S.R. Pores for thought: nuclear pore complex proteins. Trends Cell Biol. 4, 357–365 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Dilworth, D.J. et al. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J. Cell Biol. 153, 1465–1478 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Suntharalingam, M. & Wente, S.R. Peering through the pore. Nuclear pore complex structure, assembly, and function. Dev. Cell 4, 775–789 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Hood, J.K., Casolari, J.M. & Silver, P.A. Nup2p is located on the nuclear side of the nuclear pore complex and coordinates Srp1p/importin-α export. J. Cell Sci. 113, 1471–1480 (2000).

    CAS  PubMed  Google Scholar 

  23. Solsbacher, J., Maurer, P., Vogel, F. & Schlenstedt, G. Nup2p, a yeast nucleoporin, functions in bidirectional transport of importin α. Mol. Cell Biol. 20, 8468–8479 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pyhtila, B. & Rexach, M. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J. Biol. Chem. 278, 42699–42709 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Floer, M. & Blobel, G. Putative reaction intermediates in Crm1-mediated nuclear protein export. J. Biol. Chem. 274, 16279–16286 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Bogerd, A.M., Hoffman, J.A., Amberg, D.C., Fink, G.R. & Davis, L.I. nup1 mutants exhibit pleiotropic defects in nuclear pore complex function. J. Cell Biol. 127, 319–332 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Fahrenkrog, B., Hurt, E.C., Aebi, U. & Pante, N. Molecular architecture of the yeast nuclear pore complex: localization of Nsp1p subcomplexes. J. Cell Biol. 143, 577–588 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ho, A.K. et al. Assembly and preferential localization of Nup116p on the cytoplasmic face of the nuclear pore complex by interaction with Nup82p. Mol. Cell Biol. 20, 5736–5748 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wente, S.R., Rout, M.P. & Blobel, G. A new family of yeast nuclear pore complex proteins. J. Cell Biol. 119, 705–723 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Chook, Y.M. & Blobel, G. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11, 703–715 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Shulga, N. et al. In vivo nuclear transport kinetics in Saccharomyces cerevisiae: a role for heat shock protein 70 during targeting and translocation. J. Cell Biol. 135, 329–339 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Shulga, N., Mosammaparast, N., Wozniak, R. & Goldfarb, D.S. Yeast nucleoporins involved in passive nuclear envelope permeability. J. Cell Biol. 149, 1027–1038 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walther, T.C. et al. The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J. Cell Biol. 158, 63–77 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Denning, D.P., Patel, S.S., Uversky, V., Fink, A.L. & Rexach, M. Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc. Natl Acad. Sci. USA 100, 2450–2455 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denning, D. et al. The nucleoporin Nup60p functions as a Gsp1p-GTP-sensitive tether for Nup2p at the nuclear pore complex. J. Cell Biol. 154, 937–950 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ribbeck, K. & Gorlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 21, 2664–2671 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shulga, N. & Goldfarb, D.S. Binding dynamics of structural nucleoporins govern nuclear pore complex permeability and may mediate channel gating. Mol. Cell Biol. 23, 534–542 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aitchison, J.D., Blobel, G. & Rout, M.P. Kap104p: a karyopherin involved in the nuclear transport of messenger RNA binding proteins. Science 274, 624–627 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Damelin, M. & Silver, P.A. Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol. Cell 5, 133–140 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Shah, S. & Forbes, D.J. Separate nuclear import pathways converge on the nucleoporin Nup153 and can be dissected with dominant-negative inhibitors. Curr. Biol. 8, 1376–1386 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Rout, M.P., Blobel, G. & Aitchison, J.D. A distinct nuclear import pathway used by ribosomal proteins. Cell 89, 715–725 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Rosenblum, J.S., Pemberton, L.F. & Blobel, G. A nuclear import pathway for a protein involved in tRNA maturation. J. Cell Biol. 139, 1655–1661 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rexach, M. & Blobel, G. Protein import into nuclei: association and dissociation reactions involving transport substrate, transport factors, and nucleoporins. Cell 83, 683–692 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Pemberton, L.F., Rosenblum, J.S. & Blobel, G. A distinct and parallel pathway for the nuclear import of an mRNA-binding protein. J. Cell Biol. 139, 1645–1653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marelli, M., Aitchison, J.D. & Wozniak, R.W. Specific binding of the karyopherin Kap121p to a subunit of the nuclear pore complex containing Nup53p, Nup59p, and Nup170p. J. Cell Biol. 143, 1813–1830 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Iovine, M.K., Watkins, J.L. & Wente, S.R. The GLFG repetitive region of the nucleoporin Nup116p interacts with Kap95p, an essential yeast nuclear import factor. J. Cell Biol. 131, 1699–1713 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F. & Cullin, C. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21, 3329–3330 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Guldener, U., Heck, S., Fielder, T., Beinhauer, J. & Hegemann, J.H. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24, 2519–2524 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kraemer, D.M., Strambio-de-Castillia, C., Blobel, G. & Rout, M.P. The essential yeast nucleoporin NUP159 is located on the cytoplasmic side of the nuclear pore complex and serves in karyopherin-mediated binding of transport substrate. J. Biol. Chem. 270, 19017–19021 (1995).

    Article  CAS  PubMed  Google Scholar 

  50. Schlaich, N.L., Haner, M., Lustig, A., Aebi, U. & Hurt, E.C. In vitro reconstitution of a heterotrimeric nucleoporin complex consisting of recombinant Nsp1p, Nup49p, and Nup57p. Mol. Biol. Cell 8, 33–46 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the following for generously sharing yeast strains, plasmids, and antibodies: J. Aitchison, J. Aris, G. Blobel, C. Cole, C. Hardy, J. Hegemann, E. Hurt, J. Loeb, E. O'Shea, M. Rout and K. Weis. We also thank M. Suntharalingam for purification of Nab2 for antibody production and initial characterization of the antibodies. We appreciate discussion and comments from C. Cole. M. Rexach, R. Wozniak, and Wente lab members. This work was supported by funds from the National Institutes of Health R01 GM51219 to S.R.W. and R01 GM67838 to D.S.G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. Wente.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures, methods and table

Supplementary methods (PDF 4972 kb)

Supplementary Information, Fig. S1

Supplementary Information, Fig. S2

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Supplementary Information, Fig. S5

Supplementary Information, Table S1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strawn, L., Shen, T., Shulga, N. et al. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat Cell Biol 6, 197–206 (2004). https://doi.org/10.1038/ncb1097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing