Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles

Abstract

Soluble secretory proteins are first translocated across endoplasmic reticulum (ER) membranes and folded in a specialized ER luminal environment. Fully folded and assembled secretory cargo are then segregated from ER-resident proteins into COPII-derived vesicles or tubular elements for anterograde transport. Mechanisms of bulk-flow, ER-retention and receptor-mediated export have been suggested to operate during this transport step, although these mechanisms are poorly understood1,2,3,4,5,6,7. In yeast, there is evidence to suggest that Erv29p functions as a transmembrane receptor for the export of certain soluble cargo proteins including glycopro-α-factor (gpαf), the precursor of α-factor mating pheromone8. Here we identify a hydrophobic signal within the pro-region of gpαf that is necessary for efficient packaging into COPII vesicles and for binding to Erv29p. When fused to Kar2p, an ER-resident protein, the pro-region sorting signal was sufficient to direct Erv29p-dependent export of the fusion protein into COPII vesicles. These findings indicate that specific motifs within soluble secretory proteins function in receptor-mediated export from the ER. Moreover, positive sorting signals seem to predominate over potential ER-retention mechanisms that may operate in localizing ER-resident proteins such as Kar2p.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hydrophobic residues within the pro-region are required for efficient packaging of gpαf.
Figure 2: The I-L-V motif is required for the binding of gpαf to Erv29p.
Figure 3: The ppαf–Kar2p fusion proteins are specifically sorted into COPII vesicles.
Figure 4: The I-L-V motif influences distribution of ppαf–Kar2p in vivo.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

References

  1. Wieland, F. T., Gleason, M. L., Serafini, T. A. & Rothman, J. E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300 (1987).

    Article  CAS  Google Scholar 

  2. Kuehn, M. J., Herrmann, J. M. & Schekman, R. COPII-cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  Google Scholar 

  3. Appenzeller, C., Andersson, H., Kappeler, F. & Hauri, H. P. The lectin ERGIC-53 is a cargo transport receptor for glycoproteins. Nature Cell Biol. 1, 330–334 (1999).

    Article  CAS  Google Scholar 

  4. Martinez-Menarguez, J. A., Geuze, H. J., Slot, J. W. & Klumperman, J. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98, 81–90 (1999).

    Article  CAS  Google Scholar 

  5. Muniz, M., Nuoffer, C., Hauri, H. -P. & Riezman, H. The Emp24 complex recruits a specific cargo molecule into endoplasmic reticulum-derived vesicles. J. Cell Biol. 148, 925–930 (2000).

    Article  CAS  Google Scholar 

  6. Polishchuk, E. V., Di Pentima, A., Luini, A. & Polishchuk, R. S. Mechanism of constitutive export from the Golgi: bulk flow via the formation, protrusion, and en bloc cleavage of large trans-Golgi network tubular domains. Mol. Biol. Cell 14, 4470–4485 (2003).

    Article  CAS  Google Scholar 

  7. Barlowe, C. Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol. 13, 295–300 (2003).

    Article  CAS  Google Scholar 

  8. Belden, W. J. & Barlowe, C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 294, 1528–1531 (2001).

    Article  CAS  Google Scholar 

  9. Kurjan, J. & Herskowitz, I. Structure of a yeast pheromone gene (MFα): a putative α-factor precursor contains four tandem copies of mature α-factor. Cell 30, 933–943 (1982).

    Article  CAS  Google Scholar 

  10. Julius, D., Blair, L., Brake, A., Sprague, G. & Thorner, J. Yeast α-factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell 32, 839–852 (1983).

    Article  CAS  Google Scholar 

  11. Otte, S. et al. Erv41p and Erv46p: New components of COPII vesicles involved in transport between the ER and Golgi complex. J. Cell Biol. 152, 503–517 (2001).

    Article  CAS  Google Scholar 

  12. Caplan, S., Green, E., Rocco, J. & Kurjan, J. Glycosylation and structure of the yeast MFα1 α-factor precursor is important for efficient transport through the secretory pathway. J. Bacteriol. 173, 627–635 (1991).

    Article  CAS  Google Scholar 

  13. Baker, D., Hicke, L., Rexach, M., Schleyer, M. & Schekman, R. Reconstitution of SEC gene product-dependent intercompartmental protein transport. Cell. 54, 335–344 (1988).

    Article  CAS  Google Scholar 

  14. Barlowe, C. et al. COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the ER. Cell 77, 895–907 (1994).

    Article  CAS  Google Scholar 

  15. McCracken, A. A. & Brodsky, J. L. Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J. Cell Biol. 132, 291–298 (1996).

    Article  CAS  Google Scholar 

  16. Caldwell, S. R., Hill, K. J. & Cooper, A. A. Degradation of endoplasmic reticulum substrates requires transport between the ER and Golgi. J. Biol. Chem. 276, 23296–23302 (2001).

    Article  CAS  Google Scholar 

  17. Kaiser, C. A., Gimeno, R. E. & Shaywitz, D. A. in Yeast III (eds Pringle, J. R., Broach, J. R. & Jones, E. W.) 91–227 (Cold Spring Harbor Laboratory Press, 1997).

    Google Scholar 

  18. Sidrauski, C. & Walter, P. The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response Cell 90, 1031–1039 (1997).

    Article  CAS  Google Scholar 

  19. Belden, W. J. & Barlowe, C. Deletion of yeast p24 genes activates the unfolded protein response. Mol. Biol. Cell 12, 957–969 (2001).

    Article  CAS  Google Scholar 

  20. Oka, C. et al. Human lysozyme secretion increased by α-factor pro-sequence in Pichia pastoris. Biosci. Biotechnol. Biochem. 63, 1977–1983 (1999).

    Article  CAS  Google Scholar 

  21. Yeung, T., Barlowe, C. & Schekman, R. Uncoupled packaging of targeting and cargo molecules during transport vesicle budding from the endoplasmic reticulum. J. Biol. Chem. 270, 30567–30570 (1995).

    Article  CAS  Google Scholar 

  22. Ellgaard, L. & Helenius, A. Quality control in the endoplasmic reticulum. Nature Rev. Mol. Cell Biol. 4, 181–191 (2003).

    Article  CAS  Google Scholar 

  23. Dean, N. & Pelham, H. R. B. Recycling of proteins from the Golgi compartment to the ER in yeast. J. Cell Biol. 111, 369–377 (1990).

    Article  CAS  Google Scholar 

  24. Semenza, J. C., Hardwick, K. G., Dean, N. & Pelham, H. R. B. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    Article  CAS  Google Scholar 

  25. Elrod-Erickson, M. J. & Kaiser, C. A. Genes that control the fidelity of endoplasmic reticulum to Golgi transport identified as suppressors of vesicle budding mutations. Mol. Biol. Cell 7, 1043–1058 (1996).

    Article  CAS  Google Scholar 

  26. Eder, J. & Fersht, A. R. Pro-sequence-assisted protein folding. Mol. Microbiol. 16, 609–614 (1995).

    Article  CAS  Google Scholar 

  27. Garrett, P. J. et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor α. Cell 110, 763–773 (2002).

    Article  CAS  Google Scholar 

  28. Belden, W. J. & Barlowe, C. Erv25p, a component of COPII-coated vesicles, forms a complex with Emp24p that is required for efficient endoplasmic reticulum to Golgi transport. J. Biol. Chem. 271, 26939–26946 (1996).

    Article  CAS  Google Scholar 

  29. Tachibana, C. & Stevens, T. The yeast EUG1 gene encodes an endoplasmic reticulum protein that is functionally related to protein disulfide isomerase. Mol. Cell. Biol. 12, 4601–4611 (1992).

    Article  CAS  Google Scholar 

  30. Powers, J. & Barlowe, C. Transport of Axl2p depends on Erv14p, an ER-vesicle protein related to the Drosophila cornichon gene product. J. Cell Biol. 142, 1209–1222 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Harris and Y. Jun for their assistance in the early stages of this study and T. Stevens for providing anti-Pdi1p serum. We also thank J. Flanagan and M. Heidtman for their comments on this manuscript. This work was supported by a grant from the National Institute of General Medical Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Barlowe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information,

Fig. S1, Fig. S2 and Table 1 (PDF 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otte, S., Barlowe, C. Sorting signals can direct receptor-mediated export of soluble proteins into COPII vesicles. Nat Cell Biol 6, 1189–1194 (2004). https://doi.org/10.1038/ncb1195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1195

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing