Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response

Abstract

Nitric oxide (NO) is a pleiotropic signalling molecule that binds to cytochrome c oxidase (complex IV) reversibly and in competition with oxygen1,2,3. This action of NO has both physiological and pathophysiological consequences. Here we report that endogenously generated NO, which disrupts the respiratory chain, may cause changes in mitochondrial calcium flux. This induces cleavage of the endoplasmic reticulum (ER) stress-regulated transcription factor p90 ATF6 into an active p50 form. Cleavage depends on a calcium-dependent serine protease through a regulated intramembrane proteolysis (RIP) process4,5. p50 ATF6 then translocates to the nucleus to upregulate expression of the ER-resident molecular chaperone, glucose-regulated protein 78 (Grp78)4. The increase in Grp78 provides significant cytoprotection6 against toxic agents, including thapsigargin, a selective ER calcium–ATPase inhibitor7. Cytoprotection is abolished after treatment with cyclosporin A (CsA), which disrupts mitochondrial calcium signalling8, or with the calcium chelator BAPTA-AM9. The NO-mediated ER stress response is diminished in rho0 cells devoid of mitochondrial DNA10, consistent with our evidence that NO-dependent mitochondrial disruption is coupled to the ER stress response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NO increases expression of Grp78 and cleavage of p90 ATF6.
Figure 2: Calcium dependence of NO-mediated ATF6 cleavage and upregulation of Grp78.
Figure 3: NO-mediated cytoprotection is calcium dependent.
Figure 4: NO-mediated Grp78 expression in mitochondrial DNA-deficient cell lines.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Moncada, S. & Erusalimsky, J. D. Does nitric oxide modulate mitochondrial energy generation and apoptosis? Nature Rev. Mol. Biol. 3, 214–220 (2002).

    Article  CAS  Google Scholar 

  2. Brown, G. C. Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase. Biochim. Biophys. Acta 1504, 46–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Cooper, C. E. Nitric oxide and cytochrome oxidase: substrate, inhibitor or effector? Trends Biochem. Sci. 27, 33–39 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Ye, J. et al. ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol. Cell 6, 1355–1364 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Brown, M. S., Ye, J., Rawson, R. B, & Goldstein, J. L. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391–398 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Reddy, R. K. et al. Endoplasmic reticulum chaperone protein GRP78 protects cells from apoptosis induced by topoisomerase inhibitors: role of ATP binding site in suppression of caspase-7 activation. J. Biol. Chem. 278, 20915–20924 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Thastrup, O., Cullen, P. J., Drobak, B. K., Hanley, M. R. & Dawson, A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc. Natl Acad. Sci. USA 87, 2466–2470 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Crompton, M. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341, 233–249 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, L. Y., Chiang, A. S., Hung, J. J., Hung, H.l., & Lai, Y. K. Thapsigargin-induced grp78 expression is mediated by the increase of cytosolic free calcium in 9L rat brain tumor cells. J. Cell Biochem. 78, 404–416 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. King, M. P. & Attardi, G. Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol. 264, 304–313 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Xu, W., Liu, L., Smith, G. C. & Charles, I. G. Nitric oxide upregulates expression of DNA-PKcs to protect cells from DNA-damaging antitumour agents. Nature Cell Biol. 2, 339–345 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Xu, W., Liu, L. & Charles, I. G. Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J. 16, 213–215 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Packer, M. A. & Murphy, M. P. Peroxynitrite causes calcium efflux from mitochondria which is prevented by cyclosporin A. FEBS Lett. 346, 237–240 (1994).

    Article  Google Scholar 

  14. Horn, T. F. et al. Nitric oxide promotes intracellular calcium release from mitochondria in striatal neurons. FASEB J. 16, 1611–1622 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Schweizer, M. & Richter C. Peroxynitrite stimulates the pyridine nucleotide-linked Ca2+ release from intact rat liver mitochondria. Biochemistry 35, 4524–4528 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Yoshida, H. et al. Endoplasmic reticulum stress-induced formation of transcription factor complex ERSF including NF-Y (CBF) and activating transcription factors 6α and 6b that activates the mammalian unfolded protein response. Mol. Cell. Biol. 21, 1239–1248 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gotoh, T., Oyadomari, S., Mori, K. & Mori, M. Nitric oxide induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J. Biol. Chem. 277, 12343–12350 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Toure, B. B. et al. Biosynthesis and enzymatic characterization of human SKI-1/S1P and the processing of its inhibitory prosegment. J. Biol. Chem. 275, 2349–2358 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Seidah, N. G. et al. Mammalian subtilisin/kexin isozyme SKI-1: A widely expressed proprotein convertase with a unique cleavage specificity and cellular localization. Proc. Natl Acad. Sci. USA 96, 1321–1326 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lenz, O., ter Meulen, J., Klenk, H. D., Seidah, N. G. & Garten, W. The Lassa virus glycoprotein precursor GP-C is proteolytically processed by subtilase SKI-1/S1P. Proc. Natl Acad. Sci. USA 98, 12701–12705 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mateo, J., Garcia-Lecea, M., Cadenas, S., Hernandez, C., & Moncada, S. Regulation of hypoxia-inducible factor-1α by nitric oxide through mitochondria-dependent and -independent pathways. Biochem. J. 376, 537–544 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, X., Shen, J. & Prywes, R. The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J. Biol. Chem. 277, 13045–13052 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Rizzuto, R. et al. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763–1766 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Montero, M. et al. Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nature Cell Biol. 2, 57–61 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Nowicky, A. V. & Duchen, M. R. Changes in [Ca2+]i and membrane currents during impaired mitochondrial metabolism in dissociated rat hippocampal neurons. J. Physiol. 507, 131–145 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, J., Chen, X., Hendershot, L. & Prywes R. ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev. Cell 3, 99–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, K. et al. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16, 452–466 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Drummond, I. A., Lee, A. S., Resendez, E. & Steinhardt, R. A. Depletion of intracellular calcium stores by calcium ionophore A23187 induces the genes for glucose-regulated proteins in hamster fibroblasts. J. Biol. Chem. 262, 12801–12805 (1987).

    CAS  PubMed  Google Scholar 

  30. Beltrán, B., Quintero, M., García-Zaragozá, E., O'Connor, E., Esplugues, J. V. & Moncada, S. Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. Proc. Natl Acad. Sci. USA 99, 8892–8897 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council, UK. We thank E. A. Higgs for help in the preparation of this manuscript. We also thank R. Prywes for providing the 3×Flag–ATF6 plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Moncada.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Figures

Fig. S1, Fig. S2 and Fig. S3 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, W., Liu, L., Charles, I. et al. Nitric oxide induces coupling of mitochondrial signalling with the endoplasmic reticulum stress response. Nat Cell Biol 6, 1129–1134 (2004). https://doi.org/10.1038/ncb1188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing