Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A-type lamins: Guardians of the soma?

Abstract

The gene LMNA encodes the proteins lamins A and C and is implicated in nine different laminopathies — inherited diseases that are linked to premature ageing. Recent evidence has demonstrated that lamins A and C have essential functions in protecting cells from physical damage, as well as in maintaining the function of transcription factors required for the differentiation of adult stem cells. Thus, the degenerative nature of laminopathies is explained because these lamins are essential for maintenance of somatic tissues in adulthood.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generalized structure of cytoplasmic intermediate-filament proteins compared to lamins.
Figure 2: Model of the lamina connected to the actin cytoskeleton.
Figure 3: Lamin-A–LAP2α complexes are required for Rb function.

Similar content being viewed by others

References

  1. Fisher, D., Chaudhary, N. & Blobel, G. cDNA sequencing of nuclear lamins A and C reveals primary and secondary structure homology to intermediate filament proteins. Proc. Natl Acad. Sci. USA 83, 6450–6454 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. McKeon, F., Kirschner, M. & Caput, D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature 319, 407–414 (1986).

    Google Scholar 

  3. Frangioni, J. & Neel, B. Use of a general purpose mammalian expression vector for studying intracellular protein targeting: identification of critical residues in the nuclear lamin A/C nuclear localisation sequence. J. Cell Sci. 105, 481–488 (1993).

    CAS  PubMed  Google Scholar 

  4. Holtz, D., Tanaka, R., Hartwig, J. & McKeon, F. The CaaX motif of lamin A functions in conjunction with the nuclear localisation signal to target assembly of the nuclear envelope. Cell 59, 969–977 (1989).

    CAS  PubMed  Google Scholar 

  5. Krohne, G., Waisenegger, I. & Hoger, T. The conserved carboxyl-terminal cysteine of nuclear lamins is essential for lamin association with the nuclear envelope. J. Cell Biol. 109, 2003–2011 (1989).

    CAS  PubMed  Google Scholar 

  6. Vorburger, K., Kitten, G. T. & Nigg, E. A. Modification of nuclear lamin proteins by a mevalonic acid derivative occurs in reticulocyte lysates and requires the cysteine residue of the C-terminal CxxM motif. EMBO J. 8, 4007–4013 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Aebi, U., Cohn, J., Buhle, L. & Gerace, L. The nuclear lamina is a meshwork of intermediate filament type filaments. Nature 323, 560–564 (1986).

    CAS  PubMed  Google Scholar 

  8. Hutchison, C. J., Alvarez-Reyes, M. & Vaughan, O. A. Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue specific disease phenotypes? J. Cell Sci. 114, 9–19 (2001).

    CAS  PubMed  Google Scholar 

  9. Harborth, J., Elbashir, S. M., Bechert, K., Tuschl, T. & Weber, K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114, 4557–4565 (2001).

    CAS  PubMed  Google Scholar 

  10. Johnson, B. R. et al. A-type lamins regulate retinoblastoma protein function by promoting subnuclear localization and preventing proteosomal degradation. Proc. Natl Acad. Sci. USA 101, 9677–9682 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hutchison, C. J. Lamins: building blocks or regulators of gene expression? Nature Rev. Mol. Cell Biol. 3, 848–858 (2002).

    CAS  Google Scholar 

  12. Newport, J., Wilson, K. L. & Dunphy, W. A lamin independent pathway for nuclear envelope assembly. J. Cell Biol. 111, 2247–2259 (1990).

    CAS  PubMed  Google Scholar 

  13. Meier, J., Campbel, K. H. S., Ford, C. C., Stick, R. & Hutchison, C. J. The role of lamin Liii in nuclear assembly and DNA replication, in cell-free extracts of Xenopus eggs. J. Cell Sci. 98, 271–279 (1991).

    CAS  PubMed  Google Scholar 

  14. Ellis, D. J., Jenkins, H. E., Whitfield, W. G. & Hutchison, C. J. GST–lamin fusion proteins act as dominant negative mutants in Xenopus egg extracts and reveal the function of the lamina in DNA replication. J. Cell Sci. 110, 2507–2518 (1997).

    CAS  PubMed  Google Scholar 

  15. Spann, T. P., Moir, R. D., Goldman, A. E., Stick, R. & Goldman, R. D. Disruption of nuclear lamin organization alters the distribution of replication factors and inhibits DNA synthesis. J. Cell Biol. 136, 1201–1212 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lui, J. et al. Essential roles of Caenorhabditis elegans lamin gene in nuclear organisation, cell cycle progression, and spatial organization of nuclear pore complexes. Mol. Biol. Cell 11, 3937–3947 (2000).

    Google Scholar 

  17. Furukawa, K. & Hotta, Y. cDNA cloning of a germ cell specific lamin B3 from mouse spermatocytes and analysis of its function by ectopic expression in somatic cells. EMBO J. 12, 97–106 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Schirmer, E., Guam, T. & Gerace, L. Involvement of the lamin rod domain in heterotypic lamin interactions important for nuclear organisation. J. Cell Biol. 153, 479–489 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Q. et al. Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues. J. Cell Sci. 114, 4485–4498 (2001).

    CAS  PubMed  Google Scholar 

  20. Zhen, Y.-Y., Libotte, T., Munck, M., Noegal, A. A. & Korenbaum, E. NUANCE: a giant protein connecting the nucleus and actin cytoskeleton. J. Cell Sci. 115, 3207–3222 (2002).

    CAS  PubMed  Google Scholar 

  21. Apel, E. D., Lewis, R. M., Grady, R. M. & Sanes, J. R. Syne-1, a dystrophin- and Klarsicht-related protein associated with synaptic nuclei at the neuromuscular junction. J. Biol. Chem. 275, 31986–31995 (2002).

    Google Scholar 

  22. Mislow, J. et al. Nesprin-1α self-associates and binds directly to emerin and lamin A in vitro. FEBS Lett. 525, 135–140 (2002).

    CAS  PubMed  Google Scholar 

  23. Muchir, A. et al. Nuclear envelope alterations in fibroblasts from LGMD1B patients carrying nonsense Y259X heterozygous or homozygous mutation in lamin A/C gene. Exp. Cell Res. 291, 352–362 (2003).

    CAS  PubMed  Google Scholar 

  24. Vaughan, O. A. et al. Lamins A and C form a structural complex that anchors emerinat the nuclear envelope. J. Cell Sci. 114, 2577–2590 (2001).

    CAS  PubMed  Google Scholar 

  25. Sullivan, T. et al. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bengtsson, L. & Wilson, K. L. Multiple and surprising new functions for emerin, a nuclear membrane protein. Curr. Opin. Cell Biol. 16, 73–79 (2004).

    CAS  PubMed  Google Scholar 

  27. Maatta, A., Hutchison, C. J. & Watson, M. D. in The Nuclear Envelope (eds Evans, D. E., Hutchison, C. J. & Bryant, J. A.) SEB Symposium Series 56, 265–278 (2004).

    Google Scholar 

  28. Inbger, D. E. Mechanosensation through integrins: cells act locally but think globally. Proc. Natl Acad. Sci. USA 100, 1472–1474 (2003).

    Google Scholar 

  29. Lammerding, J. et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Broers, J. V. L. et al. Decreased mechanical stiffness in LMNA−/− cells is caused by defective nucleo-cytoskeletal integrity. Implications for the development of laminopathies. Hum. Mol. Genet. (in the press).

  31. Spann, T. P., Goldman, A. E., Wang, C., Huang, S. & Goldman, R. D. Alteration of nuclear lamin organization inhibits RNA polymerase II-dependent transcription. J. Cell Biol. 156, 603–608 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Imai, S. et al. Dissociation of Oct-1 from the nuclear peripheral structures induces the cellular aging-associated collagenase gene expression. Mol. Biol. Cell 8, 2407–2419 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nili, E. et al. Nuclear membrane protein LAP2β, mediates transcriptional repression alone and together with its binding partner GCL (germ cell-less). J. Cell Sci. 114, 3297–3307 (2001).

    CAS  PubMed  Google Scholar 

  34. Jagatheesan, G. et al. Co-localization of intranuclear lamin foci with RNA splicing factors. J. Cell Sci. 112, 4651–4661 (1999).

    CAS  PubMed  Google Scholar 

  35. Kennedy, B. K., Barbie, D. A., Classon, M., Dyson, N. & Harlow, E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev. 14, 2855–2868 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Muralikrishna, B., Dhawan, J., Rangaraj, N. & Parnaik, V. K. Distinct changes in intranuclear lamin A/C organization during myoblast differentiation. J. Cell Sci. 114, 4001–4011 (2001).

    CAS  PubMed  Google Scholar 

  37. Ozaki, T. et al. Complex formation between lamin A and the retinoblastoma gene product: Identification of the domain on lamin A required for its interaction. Oncogene 9, 2649–2653 (1994).

    CAS  PubMed  Google Scholar 

  38. Lloyd, D. J., Trembath, R. C. & Shackleton, S. A novel interaction between lamin A and SREBP1: implications for partial lipodystrophy and other laminopathies. Hum. Mol. Genet. 11, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  39. Dreuillet, C., Tillit, J., Kress, M. & Ernoult-Lange, M. In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res. 30, 4634–4642 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Holaska, J. M., Lee, K. K., Kowalski, A. K. & Wilson, K. L. Transcription repressor germ cell-less (GCL) and barrier to autointegration factor (BAF) compete for binding to emerin in vitro. J. Biol. Chem. 278, 6969–6975 (2003).

    CAS  PubMed  Google Scholar 

  41. Stierlé, V. et al. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry 42, 4819–4828 (2003).

    PubMed  Google Scholar 

  42. Markiewicz, E., Dechat, T., Foisner, R., Quinlan, R. A. & Hutchison, C. J. Lamin A/C binding protein LAP2α is required for nuclear anchorage of retinoblastoma protein. Mol. Biol. Cell 13, 4401–4413 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hinds, P. W. et al. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70, 993–1006 (1992).

    CAS  PubMed  Google Scholar 

  44. Bione, S. et al. Identification of a novel X-linked gene responsible for Emery-Dreifuss muscular dystrophy. Nature Genet. 8, 323–327 (1994).

    CAS  PubMed  Google Scholar 

  45. Emery, A. E. & Dreifuss, F. E. Unusual type of benign X-linked muscular dystrophy. J. Neurol. Neurosurg. Psychiatry 29, 338–342 (1966).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Nagano, A. et al. Emerin deficiency at the nuclear membrane in patients with Emery-Dreifuss muscular dystrophy. Nature Genet. 12, 254–259 (1996).

    CAS  PubMed  Google Scholar 

  47. Manilal, S., Nguyen, T. M., Sewry, C. A. & Morris, G. E. The Emery-Dreifuss muscular dystrophy protein, emerin, is a nuclear membrane protein. Hum. Mol. Genet. 5, 801–808 (1996).

    CAS  PubMed  Google Scholar 

  48. Clements, L., Manilal, S., Love, D. R. & Morris, G. E. Direct interaction between emerin and lamin A. Biochem. Biophys. Res. Commun. 267, 709–714 (2000).

    CAS  PubMed  Google Scholar 

  49. Bonne, G. et al. Mutations in the gene encoding lamin A/C cause autosomal dominant Emery-Dreifuss muscular dystrophy. Nature Genet. 21, 285–288 (1999).

    CAS  PubMed  Google Scholar 

  50. Fatkin, D. et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N. Engl. J. Med. 341, 1715–1724 (1999).

    CAS  PubMed  Google Scholar 

  51. Muchir, A. et al. Identification of mutations in the gene encoding lamins A/C in autosomal dominant limb girdle muscular dystrophy with atrioventricular conduction disturbances (LGMD1B). Hum. Mol. Genet. 9, 1453–1459 (2000).

    CAS  PubMed  Google Scholar 

  52. Lin, F. & Worman, H. J. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268, 16321–16326 (1993).

    CAS  PubMed  Google Scholar 

  53. Bonne, G. et al. Clinical and molecular genetic spectrum of autosomal dominant Emery-Dreifuss muscular dystrophy due to mutations of the lamin A/C gene. Ann. Neurol. 48, 170–180 (2000).

    CAS  PubMed  Google Scholar 

  54. Dunnigan, M. G., Cochrane, M. A., Kelly, A. & Scott, J. W. Familial lipoatrophic diabetes with dominant transmission. A new syndrome. Q. J. Med. 43, 33–48 (1974).

    CAS  PubMed  Google Scholar 

  55. Grundy, S. M. et al. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Arterioscler. Thromb. Vasc. Biol. 24, e13–e18 (2004).

    CAS  PubMed  Google Scholar 

  56. Peters, J. M. et al. Localization of the gene for familial partial lipodystrophy (Dunnigan variety) to chromosome 1q21–22. Nature Genet. 18, 292–295 (1998).

    CAS  PubMed  Google Scholar 

  57. Wydner, K. L., McNeil, J. A., Lin, F., Worman, H. J. & Lawrence, J. B. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics 32, 474–478 (1996).

    CAS  PubMed  Google Scholar 

  58. Cao, H. & Hegele, R. A. Nuclear lamin A/C R482Q mutation in Canadian kindreds with Dunnigan-type familial partial lipodystrophy. Hum. Mol. Genet. 9, 109–112 (2000).

    CAS  PubMed  Google Scholar 

  59. Shackleton, S. et al. LMNA, encoding lamin A/C, is mutated in partial lipodystrophy. Nature Genet. 24, 153–156 (2000).

    CAS  PubMed  Google Scholar 

  60. Speckman, R. A. et al. Mutational and haplotype analyses of families with familial partial lipodystrophy (Dunnigan variety) reveal recurrent missense mutations in the globular C-terminal domain of lamin A/C. Am. J. Hum. Genet. 66, 1192–1198 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Dhe-Paganon, S., Werner, E. D., Chi, Y. I. & Shoelson, S. E. Structure of the globular tail of nuclear lamin. J. Biol. Chem. 277, 17381–17384 (2002).

    CAS  PubMed  Google Scholar 

  62. Krimm, I. et al. The Ig-like structure of the C-terminal domain of lamin A/C, mutated in muscular dystrophies, cardiomyopathy, and partial lipodystrophy. Structure 10, 811–823 (2002).

    CAS  PubMed  Google Scholar 

  63. Cutler, D. A., Sullivan, T., Marcus-Samuels, B., Stewart, C. L. & Reitman, M. L. Characterization of adiposity and metabolism in Lmna-deficient mice. Biochem. Biophys. Res. Commun. 291, 522–527 (2002).

    CAS  PubMed  Google Scholar 

  64. De Sandre-Giovannoli, A. et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disorder type 2) and mouse. Am. J. Hum. Genet. 70, 726–736 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Novelli, G. et al. Mandibuloacral dysplasia is caused by a mutation in LMNA-encoding lamin A/C. Am. J. Hum. Genet. 71, 426–431 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Agarwal, A. K., Fryns, J. P., Auchus, R. J. & Garg, A. Zinc metalloproteinase, ZMPSTE24, is mutated in mandibuloacral dysplasia. Hum. Mol. Genet. 12, 1995–2001 (2003).

    CAS  PubMed  Google Scholar 

  67. Bergo, M. O. et al. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl Acad. Sci. USA 99, 13049–13054 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pendas, A. M. et al. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nature Genet. 31, 94–99 (2002).

    CAS  PubMed  Google Scholar 

  69. Navarro, C. et al. Lamin A and ZMPSTE24 (FACE-1) defects cause nuclear disorganization and identify restrictive dermopathy as a lethal neonatal laminopathy. Hum. Mol. Genet. 13, 2493–503 (2004).

    CAS  PubMed  Google Scholar 

  70. Caux, F. et al. A new clinical condition linked to a novel mutation in lamins A and C with generalized lipoatrophy, insulin-resistant diabetes, disseminated leukomelanodermic papules, liver steatosis, and cardiomyopathy. J. Clin. Endocrinol. Metab. 88, 1006–1013 (2003).

    CAS  PubMed  Google Scholar 

  71. DeBusk, F. L. The Hutchinson-Gilford progeria syndrome. J. Pediatr. 80, 697–724 (1972).

    CAS  PubMed  Google Scholar 

  72. Eriksson, M. et al. Recurrent de novo point mutations in lamin A cause Hutchinson- Gilford progeria syndrome. Nature 423, 293–298 (2003).

    CAS  PubMed  Google Scholar 

  73. De Sandre-Giovannoli, A. et al. Lamin A truncation in Hutchinson-Gilford progeria. Science 300, 2055 (2003).

    CAS  PubMed  Google Scholar 

  74. Cao, H. & Hegele, R. A. LMNA is mutated in Hutchinson-Gilford progeria (MIM 176670) but not in Wiedemann-Rautenstrauch progeroid syndrome (MIM 264090). J. Hum. Genet. 48, 271–274 (2003).

    CAS  PubMed  Google Scholar 

  75. Mounkes, L. C., Kozlov, S., Hernandez, L., Sullivan, T. & Stewart, C. L. A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423, 298–301 (2003).

    CAS  PubMed  Google Scholar 

  76. Chen, L. et al. LMNA mutations in atypical Werner's syndrome. Lancet 362, 440–445 (2003).

    CAS  PubMed  Google Scholar 

  77. Csoka, A. B. et al. Novel lamin A/C gene (LMNA) mutations in atypical progeroid syndromes. J. Med. Genet. 41, 304–308 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Worman, H. J. & Courvalin, J.-C. The nuclear lamina and inherited disease. Trends Cell Biol. 12, 591–598 (2002).

    CAS  PubMed  Google Scholar 

  79. Cohen, M., Lee, K. K., Wilson, K. L. & Gruenbaum, Y. Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear lamina. Trends Biochem. Sci. 26, 41–48 (2001).

    CAS  PubMed  Google Scholar 

  80. Wilson, K. L., Zastro, M. S. & Lee, K. K. Lamins and disease: insights into nuclear infrastructure. Cell 104, 647–650 (2001).

    CAS  PubMed  Google Scholar 

  81. Nikolova, V. et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J. Clin. Invest. 113, 357–369 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Östlund, C., Bonne, G., Schwartz, K. & Worman, H. J. Properties of lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J. Cell Sci. 114, 4435–4445 (2001).

    PubMed  Google Scholar 

  83. Raharjo, W. H., Enarson, P., Sullivan, T., Stewart, C. L. & Burke, B. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J. Cell Sci. 114, 4447–4457 (2001).

    CAS  PubMed  Google Scholar 

  84. Goldman, R. D. et al. Accumulation of mutant lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl Acad. Sci. USA 101, 8963–8968 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Bridger, J. M. & Kill, I. R. Aging of Hutchinson-Gilford progeria syndrome fibroblasts is characterised by hyperproliferation and increased apoptosis. Exp. Gerontol. 39, 717–724 (2004).

    CAS  PubMed  Google Scholar 

  86. Vigoroux, C., et al. Nuclear disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci. 114, 4459–4468 (2001).

    Google Scholar 

  87. Muchir, A. et al. Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30, 444–450 (2004).

    CAS  PubMed  Google Scholar 

  88. Fidzianska, A., Toniolo, D. & Hausmaowa-Petrusewicz . Ultrastructural abnormality of sarcolemmal nuclei in Emery-Dreifuss muscular dystrophy (EDMD). J. Neurol. Sci. 159, 88–93 (1998).

    CAS  PubMed  Google Scholar 

  89. Fidzianska, A. & Hausmanowa-Petrusewicz, I. Architectural abnormalities in muscle nuclei. Ultrastructural differences between X-linked and autosomal dominant forms of EDMD. J. Neurol. Sci. 210, 47–51 (2003).

    PubMed  Google Scholar 

  90. Markiewicz, E., et al. Increased solubility of lamins and redistribution of lamin C in X-linked Emery-Dreifuss muscular dystrophy fibroblasts. J. Struct. Biol. 140, 241–253 (2002).

    CAS  PubMed  Google Scholar 

  91. Novitch, B. G., Spicer, D. B., Kim, P. S., Cheung, W. L. & Lassar, A. B. pRb is required for MEF2-dependent gene expression as well as cell-cycle arrest during skeletal muscle differentiation. Curr. Biol. 9, 449–459 (1999).

    CAS  PubMed  Google Scholar 

  92. Hansen, J. B. et al. Retinoblastoma protein functions as a molecular switch determining white versus brown adipocyte differentiation. Proc. Natl Acad. Sci. USA 101, 4112–4117 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Favreau, C., Higuet, D., Courvalin, J.-C. & Buendia, B. Expression of a mutant lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol. Cell. Biol. 24, 1481–1892 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Markiewicz, E., Ledran, M. & Hutchison, C. J. Remodelling of the nuclear lamina and nucleoskeleton is required for skeletal muscle differentiation in vitro. J. Cell Sci (in the press).

Download references

Acknowledgements

C.J.H. is supported by grants from the Association for International Cancer Research, the Muscular Dystrophy Campaign and the Wellcome Trust. H.J.W. is supported by the National Institutes of Health, the Muscular Dystrophy Association and the American Diabetes Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris J. Hutchison.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hutchison, C., Worman, H. A-type lamins: Guardians of the soma?. Nat Cell Biol 6, 1062–1067 (2004). https://doi.org/10.1038/ncb1104-1062

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1104-1062

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing