Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ion channels: Function unravelled by dysfunction

Abstract

Ion channels allow the passage of specific ions and electrical charge. Plasma membrane channels are, for example, important for electrical excitability and transepithelial transport, whereas intracellular channels have roles in acidifying endosomes or in releasing Ca2+ from stores. The function of several channels emerged from mutations in humans or mice. The resulting phenotypes include kidney stones resulting from impaired endocytosis, hypertension, defective insulin secretion, cardiac arrhythmias, neurological diseases like epilepsy or deafness and even 'developmental' defects such as osteopetrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ion transport processes in the kidney and the stria vascularis, the endolymph-secreting epithelium of the inner ear.
Figure 2: Relationship of the electrocardiogram (ECG), the cardiac action potential and the different currents contributing to the cardiac action potential.
Figure 3: Ion channels in endocytosis and exocytosis.

Similar content being viewed by others

References

  1. Hübner, C. A. & Jentsch, T. J. Ion channel diseases. Hum. Mol. Genet. 11, 2435–2445 (2002).

    PubMed  Google Scholar 

  2. Ashcroft, F. M. Ion channels and disease (Academic Press, San Diego, 2000).

    Google Scholar 

  3. Riordan, J. R. et al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245, 1066–1073 (1989).

    CAS  PubMed  Google Scholar 

  4. Smith, J. J., Travis, S. M., Greenberg, E. P. & Welsh, M. J. Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell 85, 229–236 (1996).

    CAS  PubMed  Google Scholar 

  5. Goldman, M. J. et al. Human β-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88, 553–560 (1997).

    CAS  PubMed  Google Scholar 

  6. Barasch, J. et al. Defective acidification of intracellular organelles in cystic fibrosis. Nature 352, 70–73 (1991).

    CAS  PubMed  Google Scholar 

  7. Pier, G. B. et al. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393, 79–82 (1998).

    CAS  PubMed  Google Scholar 

  8. Stutts, M. J. et al. CFTR as a cAMP-dependent regulator of sodium channels. Science 269, 847–850 (1995).

    CAS  PubMed  Google Scholar 

  9. Reddy, M. M., Light, M. J. & Quinton, P. M. Activation of the epithelial Na+ channel (ENaC) requires CFTR Cl channel function. Nature 402, 301–304 (1999).

    CAS  PubMed  Google Scholar 

  10. Nagel, G., Szellas, T., Riordan, J. R., Friedrich, T. & Hartung, K. Non-specific activation of the epithelial sodium channel by the CFTR chloride channel. EMBO Rep. 2, 249–254 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Schwiebert, E. M. et al. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81, 1063–1073 (1995).

    CAS  PubMed  Google Scholar 

  12. McNicholas, C. M. et al. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proc. Natl Acad. Sci. USA 93, 8083–8088 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mall, M., Grubb, B. R., Harkema, J. R., O'Neal, W. K. & Boucher, R. C. Increased airway epithelial Na+ absorption produces cystic fibrosis-like lung disease in mice. Nature Med. 10, 487–493 (2004).

    CAS  PubMed  Google Scholar 

  14. Ko, S. B. et al. Gating of CFTR by the STAS domain of SLC26 transporters. Nature Cell Biol. 6, 343–350 (2004).

    CAS  PubMed  Google Scholar 

  15. Schild, L. et al. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J. 15, 2381–2387 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Staub, O. et al. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J. 16, 6325–6336 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Debonneville, C. et al. Phosphorylation of Nedd4-2 by Sgk1 regulates epithelial Na+ channel cell surface expression. EMBO J. 20, 7052–7059 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Wulff, P. et al. Impaired renal Na+ retention in the sgk1-knockout mouse. J. Clin. Invest. 110, 1263–1268 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Chang, S. S. et al. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nature Genet. 12, 248–253 (1996).

    CAS  PubMed  Google Scholar 

  20. Wilson, F. H. et al. Human hypertension caused by mutations in WNK kinases. Science 293, 1107–1112 (2001).

    CAS  PubMed  Google Scholar 

  21. Wilson, F. H. et al. Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na–Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc. Natl Acad. Sci. USA 100, 680–684 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang, C. L., Angell, J., Mitchell, R. & Ellison, D. H. WNK kinases regulate thiazide-sensitive Na–Cl cotransport. J. Clin. Invest. 111, 1039–1045 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahle, K. T. et al. WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nature Genet. 35, 372–376 (2003).

    CAS  PubMed  Google Scholar 

  24. Simon, D. B. et al. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na–K–2Cl cotransporter NKCC2. Nature Genet. 13, 183–188 (1996).

    CAS  PubMed  Google Scholar 

  25. Simon, D. B. et al. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nature Genet. 17, 171–178 (1997).

    CAS  PubMed  Google Scholar 

  26. Birkenhäger, R. et al. Mutation of BSND causes Bartter syndrome with sensorineural deafness and kidney failure. Nature Genet. 29, 310–314 (2001).

    PubMed  Google Scholar 

  27. Estévez, R. et al. Barttin is a Cl-channel β-subunit crucial for renal Cl-reabsorption and inner ear K+-secretion. Nature 414, 558–561 (2001).

    PubMed  Google Scholar 

  28. Neyroud, N. et al. A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange–Nielsen cardioauditory syndrome. Nature Genet. 15, 186–189 (1997).

    CAS  PubMed  Google Scholar 

  29. Schulze-Bahr, E. et al. KCNE1 mutations cause Jervell and Lange–Nielsen syndrome. Nature Genet. 17, 267–268 (1997).

    CAS  PubMed  Google Scholar 

  30. Kubisch, C. et al. KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96, 437–446 (1999).

    CAS  PubMed  Google Scholar 

  31. Schlingmann, K. P. et al. Salt wasting and deafness resulting from mutations in two chloride channels. N. Engl. J. Med. 350, 1314–1319 (2004).

    CAS  PubMed  Google Scholar 

  32. Schlingmann, K. P. et al. Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nature Genet. 31, 166–170 (2002).

    CAS  PubMed  Google Scholar 

  33. Simon, D. B. et al. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285, 103–106 (1999).

    CAS  PubMed  Google Scholar 

  34. Van Itallie, C., Rahner, C. & Anderson, J. M. Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. J. Clin. Invest. 107, 1319–1327 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Yamauchi, K. et al. Disease-causing mutant WNK4 increases paracellular chloride permeability and phosphorylates claudins. Proc. Natl Acad. Sci. USA 101, 4690–4694 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, Q. et al. SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80, 805–811 (1995).

    CAS  PubMed  Google Scholar 

  37. Wang, Q. et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nature Genet. 12, 17–23 (1996).

    PubMed  Google Scholar 

  38. Splawski, I., Tristani-Firouzi, M., Lehmann, M. H., Sanguinetti, M. C. & Keating, M. T. Mutations in the hminK gene cause long QT syndrome and suppress IKs function. Nature Genet. 17, 338–340 (1997).

    CAS  PubMed  Google Scholar 

  39. Curran, M. E. et al. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell 80, 795–803 (1995).

    CAS  PubMed  Google Scholar 

  40. Abbott, G. W. et al. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97, 175–187 (1999).

    CAS  PubMed  Google Scholar 

  41. Koch, M. C. et al. The skeletal muscle chloride channel in dominant and recessive human myotonia. Science 257, 797–800 (1992).

    CAS  PubMed  Google Scholar 

  42. Ptacek, L. J. et al. Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita. Neuron 8, 891–897 (1992).

    CAS  PubMed  Google Scholar 

  43. Ptacek, L. J. et al. Identification of a mutation in the gene causing hyperkalemic periodic paralysis. Cell 67, 1021–1027 (1991).

    CAS  PubMed  Google Scholar 

  44. Biervert, C. et al. A potassium channel mutation in neonatal human epilepsy. Science 279, 403–406 (1998).

    CAS  PubMed  Google Scholar 

  45. Charlier, C. et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nature Genet. 18, 53–55 (1998).

    CAS  PubMed  Google Scholar 

  46. Escayg, A. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+. Nature Genet. 24, 343–345 (2000).

    CAS  PubMed  Google Scholar 

  47. Wallace, R. H. et al. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel b1 subunit gene SCN1B. Nature Genet. 19, 366–370 (1998).

    CAS  PubMed  Google Scholar 

  48. Sugawara, T. et al. A missense mutation of the Na+ channel aII subunit gene Na v 1.2 in a patient with febrile and afebrile seizures causes channel dysfunction. Proc. Natl Acad. Sci. USA 98, 6384–6389 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Plaster, N. M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105, 511–519 (2001).

    CAS  PubMed  Google Scholar 

  50. Bennett, P. B., Yazawa, K., Makita, N. & George, A. L. Jr. Molecular mechanism for an inherited cardiac arrhythmia. Nature 376, 683–685 (1995).

    CAS  PubMed  Google Scholar 

  51. Wang, D. W., Yazawa, K., George, A. L. Jr. & Bennett, P. B. Characterization of human cardiac Na+ channel mutations in the congenital long QT syndrome. Proc. Natl Acad. Sci. USA 93, 13200–13205 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chahine, M. et al. Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 12, 281–294 (1994).

    CAS  PubMed  Google Scholar 

  53. Cannon, S. C., Brown, R. H., Jr. & Corey, D. P. A sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation. Neuron 6, 619–626 (1991).

    CAS  PubMed  Google Scholar 

  54. McClatchey, A. I. et al. Temperature-sensitive mutations in the III–IV cytoplasmic loop region of the skeletal muscle sodium channel gene in paramyotonia congenita. Cell 68, 769–774 (1992).

    CAS  PubMed  Google Scholar 

  55. Bulman, D. E. et al. A novel sodium channel mutation in a family with hypokalemic periodic paralysis. Neurology 53, 1932–1936 (1999).

    CAS  PubMed  Google Scholar 

  56. Ptacek, L. J. et al. Dihydropyridine receptor mutations cause hypokalemic periodic paralysis. Cell 77, 863–868 (1994).

    CAS  PubMed  Google Scholar 

  57. Jurkat-Rott, K. et al. A calcium channel mutation causing hypokalemic periodic paralysis. Hum. Mol. Genet. 3, 1415–1419 (1994).

    CAS  PubMed  Google Scholar 

  58. Abbott, G. W. et al. MiRP2 forms potassium channels in skeletal muscle with Kv3.4 and is associated with periodic paralysis. Cell 104, 217–231 (2001).

    CAS  PubMed  Google Scholar 

  59. Schroeder, B. C. et al. A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403, 196–199 (2000).

    CAS  PubMed  Google Scholar 

  60. Sternberg, D., Tabti, N., Fournier, E., Hainque, B. & Fontaine, B. Lack of association of the potassium channel-associated peptide MiRP2-R83H variant with periodic paralysis. Neurology 61, 857–859 (2003).

    CAS  PubMed  Google Scholar 

  61. Jurkat-Rott, K. & Lehmann-Horn, F. Periodic paralysis mutation MiRP2–R83H in controls: Interpretations and general recommendation. Neurology 62, 1012–1015 (2004).

    PubMed  Google Scholar 

  62. Steinmeyer, K. et al. Inactivation of muscle chloride channel by transposon insertion in myotonic mice. Nature 354, 304–308 (1991).

    CAS  PubMed  Google Scholar 

  63. Pusch, M., Steinmeyer, K., Koch, M. C. & Jentsch, T. J. Mutations in dominant human myotonia congenita drastically alter the voltage dependence of the ClC-1 chloride channel. Neuron 15, 1455–1463 (1995).

    CAS  PubMed  Google Scholar 

  64. Berkovic, S. F. et al. Benign familial neonatal-infantile seizures: characterization of a new sodium channelopathy. Ann. Neurol. 55, 550–557 (2004).

    CAS  PubMed  Google Scholar 

  65. Browne, D. L. et al. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nature Genet. 8, 136–140 (1994).

    CAS  PubMed  Google Scholar 

  66. Ophoff, R. A. et al. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87, 543–552 (1996).

    CAS  PubMed  Google Scholar 

  67. Lossin, C., Wang, D. W., Rhodes, T. H., Vanoye, C. G. & George, A. L. Jr. Molecular basis of an inherited epilepsy. Neuron 34, 877–884 (2002).

    CAS  PubMed  Google Scholar 

  68. Schroeder, B. C., Kubisch, C., Stein, V. & Jentsch, T. J. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396, 687–690 (1998).

    CAS  PubMed  Google Scholar 

  69. Wang, H. S. et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282, 1890–1893 (1998).

    CAS  PubMed  Google Scholar 

  70. Wallace, R. H. et al. Mutant GABAA receptor g2-subunit in childhood absence epilepsy and febrile seizures. Nature Genet. 28, 49–52 (2001).

    CAS  PubMed  Google Scholar 

  71. Baulac, S. et al. First genetic evidence of GABAA receptor dysfunction in epilepsy: a mutation in the g2-subunit gene. Nature Genet. 28, 46–48 (2001).

    CAS  PubMed  Google Scholar 

  72. Cossette, P. et al. Mutation of GABRA1 in an autosomal dominant form of juvenile myoclonic epilepsy. Nature Genet. 31, 184–189 (2002).

    CAS  PubMed  Google Scholar 

  73. Shiang, R. et al. Mutations in the a1 subunit of the inhibitory glycine receptor cause the dominant neurologic disorder, hyperekplexia. Nature Genet. 5, 351–358 (1993).

    CAS  PubMed  Google Scholar 

  74. Hübner, C.A. et al. Disruption of KCC2 reveals an essential role of K–Cl-cotransport already in early synaptic inhibition. Neuron 30, 515–524 (2001).

    PubMed  Google Scholar 

  75. Bösl, M. R. et al. Male germ cells and photoreceptors, both depending on close cell–cell interactions, degenerate upon ClC-2 Cl-channel disruption. EMBO J. 20, 1289–1299 (2001).

    PubMed  PubMed Central  Google Scholar 

  76. Haug, K. et al. Mutations in CLCN2 encoding a voltage-gated chloride channel are associated with idiopathic generalized epilepsies. Nature Genet. 33, 527–532 (2003).

    CAS  PubMed  Google Scholar 

  77. Niemeyer, M. I. et al. Functional evaluation of human ClC-2 chloride channel mutations associated with idiopathic generalized epilepsies. Physiol. Genom. 19, 74–83 (2004).

    CAS  Google Scholar 

  78. Thomas, P. M. et al. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268, 426–429 (1995).

    CAS  PubMed  Google Scholar 

  79. Thomas, P., Ye, Y. & Lightner, E. Mutation of the pancreatic islet inward rectifier Kir6.2 also leads to familial persistent hyperinsulinemic hypoglycemia of infancy. Hum. Mol. Genet. 5, 1809–1812 (1996).

    CAS  PubMed  Google Scholar 

  80. Gloyn, A. L. et al. Activating mutations in the gene encoding the ATP-sensitive potassium-channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350, 1838–1849 (2004).

    CAS  PubMed  Google Scholar 

  81. Zerangue, N., Schwappach, B., Jan, Y. N. & Jan, L. Y. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane KATP channels. Neuron 22, 537–548 (1999).

    CAS  PubMed  Google Scholar 

  82. Gloyn, A. L. et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 52, 568–572 (2003).

    CAS  PubMed  Google Scholar 

  83. Lloyd, S. E. et al. A common molecular basis for three inherited kidney stone diseases. Nature 379, 445–449 (1996).

    CAS  PubMed  Google Scholar 

  84. Piwon, N., Günther, W., Schwake, M., Bösl, M. R. & Jentsch, T. J. ClC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent's disease. Nature 408, 369–373 (2000).

    CAS  PubMed  Google Scholar 

  85. Stobrawa, S. M. et al. Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron 29, 185–196 (2001).

    CAS  PubMed  Google Scholar 

  86. Kornak, U. et al. Loss of the ClC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104, 205–215 (2001).

    CAS  PubMed  Google Scholar 

  87. Günther, W., Lüchow, A., Cluzeaud, F., Vandewalle, A. & Jentsch, T. J. ClC-5, the chloride channel mutated in Dent's disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc. Natl Acad. Sci. USA 95, 8075–8080 (1998).

    PubMed  PubMed Central  Google Scholar 

  88. Günther, W., Piwon, N. & Jentsch, T. J. The ClC-5 chloride channel knock-out mouse – an animal model for Dent's disease. Pflügers Arch. 445, 456–462 (2003).

    PubMed  Google Scholar 

  89. Cleiren, E. et al. Albers-Schönberg disease (autosomal dominant osteopetrosis, type II) results from mutations in the CLCN7 chloride channel gene. Hum. Mol. Genet. 10, 2861–2867 (2001).

    CAS  PubMed  Google Scholar 

  90. Greene, J. R., Brown, N. H., DiDomenico, B. J., Kaplan, J. & Eide, D. J. The GEF1 gene of Saccharomyces cerevisiae encodes an integral membrane protein; mutations in which have effects on respiration and iron-limited growth. Mol. Gen. Genet. 241, 542–553 (1993).

    CAS  PubMed  Google Scholar 

  91. Schwappach, B., Stobrawa, S., Hechenberger, M., Steinmeyer, K. & Jentsch, T. J. Golgi localization and functionally important domains in the NH2 and COOH terminus of the yeast CLC putative chloride channel Gef1p. J. Biol. Chem. 273, 15110–15118 (1998).

    CAS  PubMed  Google Scholar 

  92. Gaxiola, R. A., Yuan, D. S., Klausner, R. D. & Fink, G. R. The yeast CLC chloride channel functions in cation homeostasis. Proc. Natl Acad. Sci. USA 95, 4046–4050 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Davis-Kaplan, S. R., Askwith, C. C., Bengtzen, A. C., Radisky, D. & Kaplan, J. Chloride is an allosteric effector of copper assembly for the yeast multicopper oxidase Fet3p: an unexpected role for intracellular chloride channels. Proc. Natl Acad. Sci. USA 95, 13641–13645 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Maranda, B. et al. Intra-endosomal pH-sensitive recruitment of the Arf-nucleotide exchange factor ARNO and Arf6 from cytoplasm to proximal tubule endosomes. J. Biol. Chem. 276, 18540–18550 (2001).

    CAS  PubMed  Google Scholar 

  95. Fujii, J. et al. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science 253, 448–451 (1991).

    CAS  PubMed  Google Scholar 

  96. Gillard, E. F. et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 11, 751–755 (1991).

    CAS  PubMed  Google Scholar 

  97. Priori, S. G. et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103, 196–200 (2001).

    CAS  PubMed  Google Scholar 

  98. Tiso, N. et al. Identification of mutations in the cardiac ryanodine receptor gene in families affected with arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2). Hum. Mol. Genet. 10, 189–194 (2001).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Jentsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jentsch, T., Hübner, C. & Fuhrmann, J. Ion channels: Function unravelled by dysfunction. Nat Cell Biol 6, 1039–1047 (2004). https://doi.org/10.1038/ncb1104-1039

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1104-1039

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing