Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization

Abstract

The formation and maintenance of polarized distributions of membrane proteins in the cell membrane are key to the function of polarized cells. In polarized neurons, various membrane proteins are localized to the somatodendritic domain or the axon. Neurons control polarized delivery of membrane proteins to each domain, and in addition, they must also block diffusional mixing of proteins between these domains. However, the presence of a diffusion barrier in the cell membrane of the axonal initial segment (IS), which separates these two domains, has been controversial: it is difficult to conceive barrier mechanisms by which an even diffusion of phospholipids could be blocked. Here, by observing the dynamics of individual phospholipid molecules in the plasma membrane of developing hippocampal neurons in culture, we found that their diffusion was blocked in the IS membrane. We also found that the diffusion barrier is formed in neurons 7–10 days after birth through the accumulation of various transmembrane proteins that are anchored to the dense actin-based membrane skeleton meshes being formed under the IS membrane. We conclude that various membrane proteins anchored to the dense membrane skeleton function as rows of pickets, which even stop the overall diffusion of phospholipids, and may represent a universal mechanism for formation of diffusion barriers in the cell membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immobilisation of DOPE in the IS membrane of older neurons.
Figure 2: DOPE diffusion is suppressed only in the IS of older neurons.
Figure 3: Developmental barrier formation.
Figure 4: The barrier mechanism of the IS membrane.

Similar content being viewed by others

References

  1. Kobayashi, T., Storrie, B., Simons, K. & Dotti, C.G. A functional barrier to movement of lipids in polarized neurons. Nature 359, 647–650 (1992).

    Article  CAS  Google Scholar 

  2. Futerman, A.H., Khanin, R. & Segel, L.A. Lipid diffusion in neurons. Nature 362, 119 (1993).

    Article  CAS  Google Scholar 

  3. Winckler, B. & Poo, M.-M. No diffusion barrier at axon hillock. Nature 379, 213 (1996).

    Article  CAS  Google Scholar 

  4. Popov, S., Brown, A. & Poo, M.-M. Forward plasma membrane flow in growing nerve processes. Science 259, 244–246 (1993).

    Article  CAS  Google Scholar 

  5. Winckler, B., Forscher, P. & Mellman, I. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397, 698–701 (1999).

    Article  CAS  Google Scholar 

  6. Winckler, B. & Mellman, I. Neuronal polarity: Controlling the sorting and diffusion of membrane components. Neuron 23, 637–640 (1999).

    Article  CAS  Google Scholar 

  7. Kusumi, A., Sako, Y., Fujiwara, T. & Tomishige, M. Methods Cell Biol. 55, 173–194 (1998).

    Article  CAS  Google Scholar 

  8. Ritchie, K. & Kusumi, A. Methods Enzymol. 360, 618–634 (2003).

    Article  CAS  Google Scholar 

  9. Pasenkiewicz-Gierula, M., Subczynski, W.K. & Kusumi, A. Influence of phospholipid unsaturation on the cholesterol distribution in membranes. Biochimie 73, 1311–1316 (1991).

    Article  CAS  Google Scholar 

  10. Iino, R., Koyama, I. & Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 80, 2667–2677 (2001).

    Article  CAS  Google Scholar 

  11. Sako, Y., Nagafuchi, A., Tsukita, S., Takeichi, M. & Kusumi, A. Cytoplasmic regulation of the movement of E-cadherin on the free cell surface as studied by optical tweezers and single particle tracking: corralling and tethering by the membrane skeleton. J. Cell Biol. 140, 1227–1240 (1998).

    Article  CAS  Google Scholar 

  12. Tomishige, M., Sako, Y. & Kusumi, A. Regulation mechanism of the lateral diffusion of band 3 in erythrocyte membranes by the membrane skeleton. J. Cell Biol. 142, 989–1000 (1998).

    Article  CAS  Google Scholar 

  13. Tomishige, M. & Kusumi, A. Compartmentalization of the erythrocyte membrane by the membrane skeleton: intercompartmental hop diffusion of band 3. Mol. Biol. Cell 10, 2475–2479 (1999).

    Article  CAS  Google Scholar 

  14. Zhou D. et al. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143, 1295–1304 (1998).

    Article  CAS  Google Scholar 

  15. Davis J.Q., Lambert, S. & Bennett, V. Molecular composition of the node of Ranvier: identification of ankyrin-binding cell adhesion molecules neurofascin (Mucin+/ third FNIII domain-) and NrCAM at nodal axon segments. J. Cell Biol. 135, 1355–1367 (1996).

    Article  CAS  Google Scholar 

  16. Fujiwara, T. et al. Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell. Biol. 157, 1071–1082 (2002).

    Article  CAS  Google Scholar 

  17. Sahara, Y. et al. A new class of neurotoxin from wasp venom slows inactivation of sodium current. Eur. J. Neurosci. 12, 1961–1970 (2000).

    Article  CAS  Google Scholar 

  18. Konno, K. et al. Molecular determinants of binding of a wasp toxin (PMTXs) and its analogs in the Na+ channels proteins. Neurosci. Lett. 295, 29–32 (2000).

    Article  Google Scholar 

  19. Saxton, M.J. Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys. J. 66, 394–401 (1994).

    Article  CAS  Google Scholar 

  20. Takizawa, P.A., DeRisi, J.L., Wilhelm, J.E. & Vale, R.D. Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290, 341–344 (2000).

    Article  CAS  Google Scholar 

  21. Bartles, J.R. The spermatid plasma membrane comes of age. Trends. Cell Biol. 5, 400–404 (1995).

    Article  CAS  Google Scholar 

  22. Offenhausser, A., Sprossler, C., Matsuzawa, M. & Knoll, W. Electrophysiological development of embryonic hippocampal neurons from the rat grown on synthetic thin films. Neurosci. Lett. 223, 9–12 (1997).

    Article  CAS  Google Scholar 

  23. Yamada, M. & Hatanaka, H. Interleukin-6 protects cultured rat hippocampal neurons against glutamate-induced cell death. Brain Res. 643, 173–180 (1994).

    Article  CAS  Google Scholar 

  24. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65, 2021–2040 (1993).

    Article  CAS  Google Scholar 

  25. Akashi, K., Miyata, H., Itoh, H. & Kinosita, K. Jr. Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys. J. 71, 3242–3250 (1996).

    Article  CAS  Google Scholar 

  26. Iino, R. & Kusumi, A. Single-fluorophore dynamic imaging in living cells. J. Fluorescence 11, 187–195 (2001).

    Article  CAS  Google Scholar 

  27. Saxton, M.J. Single-particle tracking: the distribution of diffusion coefficients. Biophys. J. 72, 1744–1753 (1997).

    Article  CAS  Google Scholar 

  28. Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Article  CAS  Google Scholar 

  29. Almeida, P.F.F., Vaz, W.L.C. & Thompson, T.E. Lateral diffusion and percolation in two-phase, two-component lipid bilayers. Topology of the solid-phase domains in-plane and across the lipid bilayer. Biochemistry 31, 7198–7210 (1992).

    Article  CAS  Google Scholar 

  30. Sperotto, M.M. & Mouritsen, O.G. Monte Carlo simulation studies of lipid order parameter profiles near integral membrane proteins. Biophys. J. 59, 261–270 (1991).

    Article  CAS  Google Scholar 

  31. Bussell, S.J., Koch, D.L. & Hammer, D.A. Effect of hydrodynamic interactions on the diffusion of integral membrane proteins: diffusion in plasma membranes. Biophys. J. 68, 1836–1849 (1995).

    Article  CAS  Google Scholar 

  32. Dodd, T.L., Hammer, D.A., Sangani, A.S. & Koch, D.L. Numerical simulations of the effect of hydrodynamic interactions on diffusivities of integral membrane proteins. J. Fluid Mech. 293, 147–180 (1995).

    Article  CAS  Google Scholar 

  33. Jacobson, K., How, Y., Derzko, Z., Wojcieszyn, J. & Organisciak, D. Lipid lateral diffusion in the surface membrane of cells and in multibilayers formed from plasma membrane lipids. Biochemistry 20, 5268–5275 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Aihara and M. Nozaki for help with culturing neurons. We also thank V. Bennett and his colleagues, M. Poo, B. Winckler, T. Kobayashi, and Y. Tsuchimoto for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Kusumi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakada, C., Ritchie, K., Oba, Y. et al. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat Cell Biol 5, 626–632 (2003). https://doi.org/10.1038/ncb1009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing