Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Polar expeditions — provisioning the centrosome for mitosis

Abstract

It is now clear that both centrioles and their surrounding pericentriolar material (PCM) are capable of self-assembly. Whereas centrioles are normally duplicated during G1–S phase, PCM components may be loaded onto centrosomes in both a microtubule-dependent and -independent manner at all stages of the cell cycle. Centrosomes enlarge dramatically after mitotic entry, when both Aurora A and Polo-like kinases cooperate to recruit additional γ-tubulin ring complexes and microtubule-associated proteins to assist spindle formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynein-dependent and -independent routes for loading centrosomal components.
Figure 2: Polo kinase promotes the centrosomal association of γ-tubulin, and Aurora A kinase, D-TACC, in Drosophila mitotic cells.
Figure 3: Roles of Polo-like and Aurora A kinases in centrosomal maturation in Drosophila.

Similar content being viewed by others

References

  1. Flemming, W. Studien über die Entwicklungsgeschichte der Najaden. Sitzungsber Akad Wissensch Wien. 71, 81–147 (1875).

    Google Scholar 

  2. Boveri, T. Zellenstudien II. Die Befruchtung und Teilung des Eies von Ascaris megalocephala. Jena Zeit. Naturw. 22, 685–882 (1888).

    Google Scholar 

  3. Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107–128 (1992).

    CAS  PubMed  Google Scholar 

  4. Piel, M., Meyer, P., Khodjakov, A., Rieder, C.L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behaviour in vertebrate cells. J. Cell Biol. 149, 317–330 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dutcher, S.K. & Trabuco, E.C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes δ-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dutcher, S.K. Motile organelles: the importance of specific tubulin isoforms. Curr. Biol. 11, R419–R422 (2001).

    CAS  PubMed  Google Scholar 

  7. Dutcher, S.K., Morrissette, N.S., Preble, A.M., Rackley, C. & Stanga, J. ε-tubulin is an essential component of the centriole. Mol. Biol. Cell 13, 3859–3869 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chang, P., Giddings, T.H., Winey, M. & Stearns, T. Varε-Tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol. 5, 71–76 (2003).

    CAS  PubMed  Google Scholar 

  9. Salisbury, J.L. Centrin, centrosomes, and mitotic spindle poles. Curr. Opin. Cell Biol. 7, 39–45 (1995).

    CAS  PubMed  Google Scholar 

  10. Paoletti, A., Moudjou, M., Paintrand, M., Salisbury, J.L & Bornens, M. Most of centrin in animal cells is not centrosome-associated and centrosomal centrin is confined to the distal lumen of centrioles. J. Cell Sci. 109, 3089–3102 (1996).

    CAS  PubMed  Google Scholar 

  11. Ruiz-Binder, N.E., Geimer, S. & Melkonian, M. In vivo localization of centrin in the green alga Chlamydomonas reinhardtii. Cell. Motil. Cytoskeleton 52, 43–55 (2002).

    CAS  PubMed  Google Scholar 

  12. Lutz, W., Lingle, W.L., McCormick, D., Greenwood, T.M. & Salisbury, J.L. Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J. Biol. Chem. 276, 20774–20780 (2001).

    CAS  PubMed  Google Scholar 

  13. Salisbury, J.L., Suino, K.M., Busby, R. & Springett, M. Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287–1292 (2002).

    CAS  PubMed  Google Scholar 

  14. Moritz, M. & Agard, D.A. γ-tubulin complexes and microtubule nucleation. Curr. Opin. Struct. Biol. 11, 174–181 (2001).

    CAS  PubMed  Google Scholar 

  15. Job, D., Valiron, O. & Oakley, B. Microtubule nucleation. Curr. Opin. Cell Biol. 15, 111–117 (2003).

    CAS  PubMed  Google Scholar 

  16. Knop, M. & Schiebel, E. Spc98p and Spc97p of the yeast γ-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J. 16, 6985–6995 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Oegema, K. et al. Characterization of two related Drosophila γ-tubulin complexes that differ in their ability to nucleate microtubules. J. Cell Biol. 144, 721–733 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Murphy, S.M., Urbani, L. & Stearns, T. The mammalian γ-tubulin complex contains homologues of the yeast spindle pole body components spc97p and spc98p. J. Cell Biol. 141, 663–674 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Paluh, J.L. et al. A mutation in γ-tubulin alters microtubule dynamics and organization and is synthetically lethal with the kinesin-like protein pkl1p. Mol. Biol. Cell 11, 1225–1239 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Prigozhina, N.L., Walker, R.A., Oakley. C.E. & Oakley, B.R. γ-tubulin and the C-terminal motor domain kinesin-like protein, KLPA, function in the establishment of spindle bipolarity in Aspergillus nidulans. Mol. Biol. Cell 12, 3161–3174 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Vogel, J. & Snyder, M. γ-Tubulin of budding yeast. Curr. Top. Dev. Biol. 49, 75–104 (2000).

    CAS  PubMed  Google Scholar 

  22. Vogel, J. & Snyder, M. The carboxy terminus of Tub4p is required for γ-tubulin function in budding yeast. J. Cell Sci. 113, 3871–3882 (2000).

    CAS  PubMed  Google Scholar 

  23. Sampaio, P., Rebollo, E., Varmark, H., Sunkel, C.E & Gonzalez, C. Organized microtubule arrays in γ-tubulin-depleted Drosophila spermatocytes. Curr. Biol. 11, 1788–1793 (2001).

    CAS  PubMed  Google Scholar 

  24. Barbosa, V., Gatt, M., Rebollo, E., Gonzalez, C. & Glover, D.M. Drosophila dd4 mutants reveal that γTuRC is required to maintain juxtaposed half spindles in spermatocytes. J. Cell Sci. 116, 929–941 (2003).

    CAS  PubMed  Google Scholar 

  25. Hendrickson, T.W., Yao, J., Bhadury, S., Corbett, A.H. & Joshi, H.C. Conditional mutations in γ-tubulin reveal its involvement in chromosome segregation and cytokinesis. Mol. Biol. Cell 12, 2469–2481 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Vardy, L. & Toda, T. The fission yeast γ-tubulin complex is required in G(1) phase and is a component of the spindle assembly checkpoint. EMBO J. 19, 6098–6111 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vardy, L. Fujita, A. & Toda, T. The γ-tubulin complex protein Alp4 provides a link between the metaphase checkpoint and cytokinesis in fission yeast. Genes Cells 73, 65–73 (2002).

    Google Scholar 

  28. Dictenberg, J.B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–74 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi, M., Yamagiwa, A., Nishimura, T., Mukai, H. & Ono, Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring γ-tubulin ring complex. Mol. Biol. Cell 13, 3235–3245 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gillingham, A.K. & Munro, S. The PACT domain, a conserved centrosomal targeting motif in the coiled-coil proteins AKAP450 and pericentrin. EMBO Rep. 1, 524–529 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, M. et al. Characterization of a novel giant scaffolding protein, CG-NAP, that anchors multiple signaling enzymes to centrosome and the Golgi apparatus J. Biol. Chem. 274, 17267–17274 (1999).

    CAS  PubMed  Google Scholar 

  32. Takahashi, M., Mukai, H., Oishi, K., Isagawa, T. & Ono, Y. Association of immature hypophosphorylated protein kinase c-ε with an anchoring protein CG-NAP. J. Biol. Chem. 275, 34592–34596 (2000).

    CAS  PubMed  Google Scholar 

  33. Diviani, D., Langeberg, L.K., Doxsey, S.J. & Scott, J.D. Pericentrin anchors protein kinase A at the centrosome through newly identified RII-binding domain. Curr. Biol. 10, 417–420 (2000).

    CAS  PubMed  Google Scholar 

  34. Li, Q. et al. Kendrin/pericentrin-B, a centrosome protein with homology to pericentrin that complexes with PCM-1. J. Cell Sci. 114, 797–809 (2001).

    CAS  PubMed  Google Scholar 

  35. Hinchcliffe, E.H. & Sluder, G. “It takes two to tango”: understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167–1181 (2001).

    CAS  PubMed  Google Scholar 

  36. Lange, B.M. & Gull, K. A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130, 919–927 (1995).

    CAS  PubMed  Google Scholar 

  37. Nakagawa, Y., Yamane, Y., Okanoue, T., Tsukita, S. & Tsukita, S. Outer dense fiber 2 is a widespread centrosome scaffold component preferentially associated with mother centrioles: its identification from isolated centrosomes. Mol. Biol. Cell 12, 1687–1697 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fry, A.M. et al. Components of an SCF ubiquitin ligase localize to the centrosome and regulate the centrosome duplication cycle. J. Cell Biol. 141, 1563–1574 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mayor, T., Stierhof, Y.D., Tanaka, K., Fry, A.M. & Nigg, E.A. The centrosomal protein C-Nap1 is required for cell cycle-regulated centrosome cohesion. J. Cell Biol. 151, 837–846 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Marshall, W.F. & Rosenbaum, J.L. Are there nucleic acids in the centrosome? Curr. Top. Dev. Biol. 49, 187–205 (2000).

    CAS  PubMed  Google Scholar 

  41. Anderson, R.G. & Brenner, R.M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J. Cell Biol. 50, 10–34 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Szollosi, D., Calarco, P. & Donahue, R.P. Absence of centrioles in the first and second meiotic spindles of mouse oocytes. J. Cell Sci. 11, 521–541 (1972).

    CAS  PubMed  Google Scholar 

  43. Marshall, W.F., Vucica, Y. & Rosenbaum, J.L. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr. Biol. 11, 308–317 (2001).

    CAS  PubMed  Google Scholar 

  44. Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575–1589 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Maniotis, A. & Schliwa, M. Microsurgical removal of centrosomes blocks cell reproduction and centriole generation in BSC-1 cells. Cell 67, 495–504 (1991).

    CAS  PubMed  Google Scholar 

  46. Khodjakov, A., Cole, R.W., Oakley, B.R. & Rieder, C.L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    CAS  PubMed  Google Scholar 

  47. Khodjakov, A. & Rieder, C.L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237–242 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Khodjakov, A. et al. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171–1181 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zimmerman, W. & Doxsey, S.J. Construction of centrosomes and spindle poles by molecular motor-driven assembly of protein particles. Traffic 1, 927–934 (2000).

    CAS  PubMed  Google Scholar 

  50. Young, A., Dictenberg, J.B., Purohit, A., Tuft, R. & Doxsey, S.J. Cytoplasmic dynein-mediated assembly of pericentrin and γ-tubulin onto centrosomes. Mol. Biol. Cell 11, 2047–2056 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Khodjakov, A. & Rieder, C. The sudden recruitment of γ-tubulin to the centrosome at the onset of mitosis and its dynamic exchange throughout the cell cycle, do not require microtubules. J. Cell Biol. 146, 585–596 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Quintyne, N.J. et al. Dynactin is required for microtubule anchoring at centrosomes. J. Cell Biol. 147, 321–334 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Quintyne, N.J. & Schroer, T.A. Distinct cell cycle-dependent roles for dynactin and dynein at centrosomes. J. Cell Biol. 159, 245–254 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Balczon, R., Varden, C.E. & Schroer, T.A. Role for microtubules in centrosome doubling in Chinese hamster ovary cells. Cell Motil. Cytoskeleton 42, 60–72 (1999).

    CAS  PubMed  Google Scholar 

  55. Kubo, A., Sasaki, H., Yuba-Kubo, A., Tsukita, S. & Shiina, N. Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J. Cell Biol. 147, 969–980 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Dammermann, A. & Merdes, A. Assembly of centrosomal proteins and microtubule organization depends on PCM-1. J. Cell Biol. 159, 255–266 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Keating, T.J. et al. Microtubule release from the centrosome. Proc. Natl Acad. Sci. USA 94, 5078–5083 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Dasso, M. The Ran GTPase: theme and variations. Curr. Biol. 12, R502–R508 (2002).

    CAS  PubMed  Google Scholar 

  59. Trieselmann, N. & Wilde, A. Ran localises around the microtubule spindle in vivo during mitosis in Drosophila embryos. Curr. Biol. 12, 1124–1129 (2002).

    CAS  PubMed  Google Scholar 

  60. Moore, W., Zhang, C. & Clarke, P.R. Targeting of RCC1 to chromosomes is required for proper mitotic spindle assembly in human cells. Curr. Biol. 12, 1442–1447 (2002).

    CAS  PubMed  Google Scholar 

  61. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

    CAS  PubMed  Google Scholar 

  62. Merdes, A., Ramyar, K., Vechio, J.D. & Cleveland, D.W. A complex of NuMa and cytoplasmic dynein is essential for spindle assembly. Cell 87, 447–458 (1996).

    CAS  PubMed  Google Scholar 

  63. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Garrett, S., Auer, K., Compton, D.A. & Kapoor, T.M. hTPX2 is required for normal spindle morphology and centrosome integrity during vertebrate cell division. Curr. Biol. 12, 2055–2059 (2002).

    CAS  PubMed  Google Scholar 

  65. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, a novel Xenopus MAP involved in spindle pole organisation. J. Cell Biol. 149, 1405–1418 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Ripoll, P., Pimpinelli, S., Valdivia, M.M. & Avila, J. A cell division mutant of Drosophila with a functionally abnormal spindle. Cell 41, 907–912 (1985).

    CAS  PubMed  Google Scholar 

  67. Saunders, R.D., Avides, M.C., Howard, T., Gonzalez, C. & Glover, D.M. The Drosophila gene abnormal spindle encodes a novel microtubule-associated protein that associates with the polar regions of the mitotic spindle. J. Cell Biol. 137, 881–890 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. do Carmo Avides, M. & Glover, D.M. Abnormal spindle protein, Asp, and the integrity of mitotic centrosomal microtubule organizing centers. Science 283, 1733–1735 (1999).

    CAS  PubMed  Google Scholar 

  69. Moritz, M., Zheng, Y., Alberts, B.M. & Oegema, K. Recruitment of the γ-tubulin ring complex to Drosophila salt-stripped centrosome scaffolds. J. Cell Biol. 142, 775–786 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bond, J. et al. ASPM is a major determinant of cerebral cortical size. Nature Genet. 32, 316–320 (2002).

    CAS  PubMed  Google Scholar 

  71. Jackman, M., Lindon, C., Nigg, E.A. & Pines, J. Active cyclin B1-Cdk1 first appears on centrosomes in prophase. Nature Cell Biol. 5, 143–148 (2003).

    CAS  PubMed  Google Scholar 

  72. Kumagai, A. & Dunphy, W.G. Purification and molecular cloning of Plx1, a cdc25-regulatory kinase from Xenopus egg extracts. Science 273, 1377–1380 (1996).

    CAS  PubMed  Google Scholar 

  73. Sunkel, C.E. & Glover, D.M. polo, a mitotic mutant of Drosophila displaying abnormal spindle poles. J. Cell Sci. 89, 25–38 (1988).

    PubMed  Google Scholar 

  74. Barbosa, V., Yamamoto, R.R., Henderson, D.S. & Glover, D.M. Mutation of a Drosophila γ-tubulin ring complex subunit encoded by discs degenerate-4 differentially disrupts centrosomal protein localization. Genes Dev. 14, 3126–3139 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Donaldson, M.M., Tavrea, A.A.M., Ohkura, H., Deak, P. & Glover, D. Metaphase arrest with centromere separation in polo mutants of Drosophila. J. Cell Biol. 153, 663–675 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lane, H.A. & Nigg, E.A. Antibody microinjection reveals an essential role for human polo-like kinase 1 (Plk1) in the functional maturation of mitotic centrosomes. J. Cell Biol. 135, 1701–1713 (1996).

    CAS  PubMed  Google Scholar 

  77. do Carmo Avides, M., Tavares, A. & Glover, D.M. Polo kinase and Asp are needed to promote the mitotic organizing activity of centrosomes. Nature Cell Biol. 3, 421–424 (2001).

    CAS  PubMed  Google Scholar 

  78. de Carcer, G., do Carmo Avides, M., Lallena, M.J., Glover, D.M. & González, C. Requirement of Hsp90 for centrosomal function reflects its regulation of Polo kinase stability. EMBO J. 20, 2878–2884 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Simizu, S. & Osada, H. Mutations in the plk gene lead to instability of Plk protein in human tumour cell lines. Nature Cell Biol. 2, 852–854 (2000).

    CAS  PubMed  Google Scholar 

  80. Lange, B.M., Bachi, A., Wilm, M. & González, C. Hsp90 is a core centrosomal component and is required at different stages of the centrosome cycle in Drosophila and vertebrates. EMBO J. 19, 1252–1262 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Glover, D.M., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).

    CAS  PubMed  Google Scholar 

  82. Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437–451 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Heald, R. Motor function in the mitotic spindle. Cell 102, 399–402 (2000).

    CAS  PubMed  Google Scholar 

  84. Berdnik, D. & Knoblich, J.A. Drosophila Aurora-A is required for centrosome maturation and actin-dependent asymmetric protein localization during mitosis. Curr. Biol. 12, 640–647 (2002).

    CAS  PubMed  Google Scholar 

  85. Cullen, C.F., Deak, P., Glover, D.M. & Ohkura, H. mini spindles: A gene encoding a conserved microtubule-associated protein required for the integrity of the mitotic spindle in Drosophila. J. Cell Biol. 146, 1005–1018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee, M.J., Gergely, F., Jeffers, K., Peak-Chew, S.Y. & Raff, J.W. Msps/XMAP215 interacts with the centrosomal protein D-TACC to regulate microtubule behaviour. Nature Cell Biol. 3, 643–649 (2001).

    CAS  PubMed  Google Scholar 

  87. Gergely, F., Kidd, D., Jeffers, K., Wakefield, J.G. & Raff, J.W. D-TACC: a novel centrosomal protein required for normal spindle function in the early Drosophila embryo EMBO J. 19, 241–252 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hannak, E., Kirkham, M., Hyman, A.A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Hamill, D.R., Severson, A.F., Carter, J.C. & Bowerman, B. Centrosome maturation and mitotic spindle assembly in C. elegans require SPD-5, a protein with multiple coiled-coil domains. Dev. Cell 3, 673–684 (2002).

    CAS  PubMed  Google Scholar 

  90. Katayama, H., Zhou, H., Li, Q., Tatsuka, M. & Sen, S. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J. Biol. Chem. 276, 46219–46224 (2001).

    CAS  PubMed  Google Scholar 

  91. Sumiyoshi, E., Sugimoto, A. & Yamamoto, M. Protein phosphatase 4 is required for centrosome maturation in mitosis and sperm meiosis in C. elegans. J. Cell Sci. 115, 1403–1410 (2002).

    CAS  PubMed  Google Scholar 

  92. Kufer, T.A. et al. TPX2 is required for targeting Aurora-A kinase to the spindle. J. Cell Biol. 158, 617–623 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tsai, M.Y. et al. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nature Cell Biol. 5, 242–248 (2003).

    CAS  PubMed  Google Scholar 

  94. Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550–1553 (2001).

    CAS  PubMed  Google Scholar 

  95. Carmena, M. et al. Drosophila polo kinase is required for cytokinesis. J. Cell Biol. 143, 659–671 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Riparbelli, M.G., Callaini, G., Glover, D.M. & Avides, M. do C. A requirement for the Abnormal Spindle protein to organise microtubules of the central spindle for cytokinesis in Drosophila. J. Cell Sci. 115, 913–922 (2002).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagden, S., Glover, D. Polar expeditions — provisioning the centrosome for mitosis. Nat Cell Biol 5, 505–511 (2003). https://doi.org/10.1038/ncb0603-505

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0603-505

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing