Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade

A Retraction to this article was published on 31 October 2014

Abstract

Pluripotent mesenchymal stem cells in bone marrow differentiate into adipocytes, osteoblasts and other cells1,2. Balanced cytodifferentiation of stem cells is essential for the formation and maintenance of bone marrow; however, the mechanisms that control this balance remain largely unknown. Whereas cytokines such as interleukin-1 (IL-1) and tumour-necrosis factor-α (TNF-α) inhibit adipogenesis3,4, the ligand-induced transcription factor peroxisome proliferator-activated receptor-γ5 (PPAR-γ), is a key inducer of adipogenesis. Therefore, regulatory coupling between cytokine- and PPAR-γ-mediated signals might occur during adipogenesis. Here we show that the ligand-induced transactivation function of PPAR-γ is suppressed by IL-1 and TNF-α, and that this suppression is mediated through NF-κB activated by the TAK1/TAB1/NF-κB-inducing kinase (NIK) cascade6,7,8,9, a downstream cascade associated with IL-1 and TNF-α signalling. Unlike suppression of the PPAR-γ transactivation function by mitogen-activated protein kinase-induced growth factor signalling through phosphorylation of the A/B domain10, NF-κB blocks PPAR-γ binding to DNA by forming a complex with PPAR-γ and its AF-1-specific co-activator PGC-2. Our results suggest that expression of IL-1 and TNF-α in bone marrow may alter the fate of pluripotent mesenchymal stem cells, directing cellular differentiation towards osteoblasts rather than adipocytes by suppressing PPAR-γ function through NF-κB activated by the TAK1/TAB1/NIK cascade.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-1 and TNF-α inhibit troglitazone-induced adipogenesis.
Figure 2: TAK1/TAB1/NIK mediates suppression of PPAR-γ function.
Figure 3: NF-κB prevents DNA binding by the PPAR-γ/RXR-α heterodimer.
Figure 4: Cytokine-induced association of PPAR-γ, NF-κB and PGC-2.
Figure 5: Blocking PPAR-γ function inhibits adipogenesis through the NIK cascade.

Similar content being viewed by others

References

  1. Gimble, J.M. et al. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J. Cell. Biochem. 58, 393–402 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Ducy, P., Schinke, T. & Karsenty, G. The osteoblast: a sophisticated fibroblast under central surveillance. Science 289, 1501–1504 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Ron, D., Brasier, A.R., McGehee, R.J. & Habener, J.F. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J. Clin. Invest. 89, 223–233 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Torti, F.M., Torti, S.V., Larrick, J.W. & Ringold, G.M. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor β. J. Cell. Biol. 108, 1105–1113 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Kubota, N. et al. PPARγ mediates high-fat diet-induced adipocyte hypertrophy and insulin resistance. Mol. Cell 4, 597–609 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Takaesu, G. et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol. Cell 5, 649–658 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Ninomiya-Tsuji, J. et al. The kinase TAK1 can activate the NIK–IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398, 252–256 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Shirakabe, K. et al. TAK1 mediates the ceramide signalling to stress-activated protein kinase/c-Jun N-terminal kinase. J. Biol. Chem. 272, 8141–8144 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Shibuya, H. et al. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272, 1179–1182 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Hu, E., Kim, J.B., Sarraf, P. & Spiegelman, B.M. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science 274, 2100–2103 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Yamaguchi, A., Komori, T., Suda, Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 21, 393–411 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Peschon, J.J. et al. TNF receptor-deficient mice reveal divergent roles for p55 and p75 in several models of inflammation. J. Immunol. 160, 943–952 (1998).

    CAS  PubMed  Google Scholar 

  13. Kodera, Y. et al. Ligand type-specific interactions of peroxisome proliferator-activated receptor γ with transcriptional coactivators. J. Biol. Chem. 275, 33201–33204 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Yanagisawa, J. et al. Convergence of transforming growth factor-β and vitamin D signalling pathways on SMAD transcriptional coactivators. Science 283, 1317–1321 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Woronicz, J.D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D.V. IkB kinase-b: NF-kB activation and complex formation with IkB kinase-a and NIK. Science 278, 866–869 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Kato, S. et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science 270, 1491–1494 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Chen, F.E., Huang, D.B., Chen Y.O. & Ghosh, G. Crystal structure of p50/p65 heterodimer of transcription factor NF-kB bound to DNA. Nature 391, 410–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Castillo, G. et al. An adipogenic cofactor bound by the differentiation domain of PPARg. EMBO J. 13, 3676–3687 (1999).

    Article  Google Scholar 

  19. Baumann, C.A., Chokshi, N., Saltiel, A.R. & Ribon, V. Cloning and characterization of a functional peroxisome proliferator activator receptor-gamma-responsive element in the promoter of the CAP gene. J. Biol. Chem. 275, 9131–9135 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Chen, H., Lin, R.J., Xie, W., Wilpitz, D. & Evans, R.M. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell 98, 675–86 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Zhu, Y. et al. Structural organization of mouse peroxisome proliferator-activated receptor g (mPPARg) gene: alternative promoter use and different splicing yield two mPPAR g isoforms. Proc. Natl Acad. Sci. USA 17, 7921–7925 (1995).

    Article  Google Scholar 

  22. Teitelbaum, S.L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Kersten, S., Desvergne, B. & Wahli, W. Roles of PPARs in health and disease. Nature 405, 421–424 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Wajant, H., Henkler, F. & Scheurich, P. The TNF-receptor-associated factor family: scaffold molecules for cytokine receptors, kinases and their regulators. Cell Signal 13, 389–400 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Mbalaviele, G. et al. Activation of peroxisome proliferator-activated receptor-g pathway inhibits osteoclast differentiation. J. Biol. Chem. 275, 14388–14393 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Ricote, M., Li, A.C., Willson, T.M., Kelly, C.J. & Glass, C.K. The peroxisome proliferator-activated receptor-g is a negative regulator of macrophage activation. Nature 391, 79–82 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Rossi, A. et al. Anti-inflammatory cyclopentenone prostaglandins are direct inhibitors of IκB kinase. Nature 403, 103–108 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Jepsen, K. et al. Combinatorial roles of the nuclear receptor corepressor in transcription and development. Cell 102, 753–763 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Glass, C.K. & Rosenfeld, M.G. The coregulator exchange in transcriptional functions of nuclear receptors. Genes Dev. 14, 121–141 (2000).

    CAS  PubMed  Google Scholar 

  30. Yu, J.Y., DeRuiter, S.L. & Turner, D.L. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc. Natl Acad. Sci. USA 99, 6047–6052 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Tanaka for discussions; R. Nakamura and H. Higuchi for manuscript preparation; Sankyo Pharmaceuticals for troglitazone; P. Chambon for the mouse RXR-α cDNA; and D. Turner for the RNAi vector. This work was supported in part by a Grant-in-Aid for Priority Areas from the Ministry of Education, Science, Sports and Culture of Japan (to S.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeaki Kato.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzawa, M., Takada, I., Yanagisawa, J. et al. Cytokines suppress adipogenesis and PPAR-γ function through the TAK1/TAB1/NIK cascade. Nat Cell Biol 5, 224–230 (2003). https://doi.org/10.1038/ncb942

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb942

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing