Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Signalling pathways that mediate skeletal muscle hypertrophy and atrophy

Abstract

Atrophy of skeletal muscle is a serious consequence of numerous diseases, including cancer and AIDS. Successful treatments for skeletal muscle atrophy could either block protein degradation pathways activated during atrophy or stimulate protein synthesis pathways induced during skeletal muscle hypertrophy. This perspective will focus on the signalling pathways that control skeletal muscle atrophy and hypertrophy, including the recently identified ubiquitin ligases muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx), as a basis to develop targets for pharmacologic intervention in muscle disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signalling pathways downstream of IGF-1.

Similar content being viewed by others

References

  1. Jagoe, R.T. & Goldberg, A.L. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy? Curr. Opin. Clin. Nutr. Metab. Care 4, 183–190 (2001).

    Article  CAS  Google Scholar 

  2. Mosoni, L. et al. Lower recovery of muscle protein lost during starvation in old rats despite a stimulation of protein synthesis. Am. J. Physiol. Endocrinol. Metab. 277, E608–616 (1999).

    Article  CAS  Google Scholar 

  3. Musaro, A. et al. Localized Igf-1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nature Genet. 27, 195–200 (2001).

    Article  CAS  Google Scholar 

  4. Mitch, W.E. & Goldberg, A.L. Mechanisms of muscle wasting — the role of the ubiquitin-proteasome pathway. N. Engl. J. Med. 335, 1897–1905 (1996).

    Article  CAS  Google Scholar 

  5. Tawa, N.E. Jr, Odessey, R. & Goldberg, A.L. Inhibitors of the proteasome reduce the accelerated proteolysis in atrophying rat skeletal muscles. J. Clin. Invest. 100, 197–203 (1997).

    Article  CAS  Google Scholar 

  6. Goldspink, D.F., Garlick, P.J. & McNurlan, M.A. Protein turnover measured in vivo and in vitro in muscles undergoing compensatory growth and subsequent denervation atrophy. Biochem. J. 210, 89–98 (1983).

    Article  CAS  Google Scholar 

  7. DeVol, D.L., Rotwein, P., Sadow, J.L., Novakofski, J. & Bechtel, P.J. Activation of insulin-like growth factor gene expression during work-induced skeletal muscle growth. Am. J. Physiol. 259, E89–E95 (1990).

    CAS  PubMed  Google Scholar 

  8. Coleman, M.E. et al. Myogenic vector expression of insulin-like growth factor I stimulates muscle cell differentiation and myofibre hypertrophy in transgenic mice. J. Biol. Chem. 270, 12109–12116 (1995).

    Article  CAS  Google Scholar 

  9. Musaro, A., McCullagh, K.J., Naya, F.J., Olson, E.N. & Rosenthal, N. IGF-1 induces skeletal myocyte hypertrophy through calcineurin in association with GATA-2 and NF-ATc1. Nature 400, 581–585 (1999).

    Article  CAS  Google Scholar 

  10. Semsarian, C. et al. Skeletal muscle hypertrophy is mediated by a calcium-dependent calcineurin signalling pathway. Nature 400, 576–581 (1999).

    Article  CAS  Google Scholar 

  11. Dunn, S.E., Burns, J.L. & Michel, R.N. Calcineurin is required for skeletal muscle hypertrophy. J. Biol. Chem. 274, 21908–21912 (1999).

    Article  CAS  Google Scholar 

  12. Bodine, S.C. et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nature Cell Biol. 3, 1014–1019 (2001).

    Article  CAS  Google Scholar 

  13. Rommel, C. et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nature Cell Biol. 3, 1009–1013 (2001).

    Article  CAS  Google Scholar 

  14. Horsley, V. & Pavlath, G.K. Nfat: ubiquitous regulator of cell differentiation and adaptation. J. Cell Biol. 156, 771–774 (2002).

    Article  CAS  Google Scholar 

  15. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  16. Serrano, A.L. et al. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibres but not muscle growth. Proc. Natl Acad. Sci. USA 98, 13108–13113 (2001).

    Article  CAS  Google Scholar 

  17. Dupont-Versteegden, E.E., Knox, M., Gurley, C.M., Houle, J.D. & Peterson, C.A. Maintenance of muscle mass is not dependent on the calcineurin–NFAT pathway. Am. J. Physiol. Cell Physiol. 282, C1387–C1395 (2002).

    Article  CAS  Google Scholar 

  18. Naya, F.J. et al. Stimulation of slow skeletal muscle fibre gene expression by calcineurin in vivo. J. Biol. Chem. 275, 4545–4548 (2000).

    Article  CAS  Google Scholar 

  19. Dunn, S.E., Chin, E.R. & Michel, R.N. Matching of calcineurin activity to upstream effectors is critical for skeletal muscle fibre growth. J. Cell Biol. 151, 663–672 (2000).

    Article  CAS  Google Scholar 

  20. Murgia, M. et al. Ras is involved in nerve-activity-dependent regulation of muscle genes. Nature Cell Biol. 2, 142–147 (2000).

    Article  CAS  Google Scholar 

  21. Vivanco, I. & Sawyers, C.L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nature Rev. Cancer 2, 489–501 (2002).

    Article  CAS  Google Scholar 

  22. Takahashi, A. et al. Myogenic Akt signalling regulates blood vessel recruitment during myofibre growth. Mol. Cell Biol. 22, 4803–4814 (2002).

    Article  CAS  Google Scholar 

  23. Pallafacchina, G., Calabria, E., Serrano, A.L., Kalhovde, J.M. & Schiaffino, S. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fibre type specification. Proc. Natl Acad. Sci. USA 99, 9213–9218 (2002).

    Article  CAS  Google Scholar 

  24. Chen, W.S. et al. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev. 15, 2203–2208 (2001).

    Article  CAS  Google Scholar 

  25. Cho, H. et al. Insulin resistance and a diabetes mellitus-like syndrome in mice lacking the protein kinase Akt2 (PKB β). Science 292, 1728–1731 (2001).

    Article  CAS  Google Scholar 

  26. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998).

    Article  CAS  Google Scholar 

  27. Goberdhan, D.C., Paricio, N., Goodman, E.C., Mlodzik, M. & Wilson, C. Drosophila tumor suppressor PTEN controls cell size and number by antagonizing the Chico/PI3-kinase signalling pathway. Genes Dev. 13, 3244–3258 (1999).

    Article  CAS  Google Scholar 

  28. Huang, H. et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372 (1999).

    CAS  PubMed  Google Scholar 

  29. Wada, T. et al. Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5′-phosphatase catalytic activity. Mol. Cell. Biol. 21, 1633–1646 (2001).

    Article  CAS  Google Scholar 

  30. Stiles, B. et al. Essential role of Akt-1/Protein kinase Bα in PTEN-controlled tumorigenesis. Mol. Cell. Biol. 22, 3842–3851 (2002).

    Article  CAS  Google Scholar 

  31. Clement, S. et al. The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409, 92–97 (2001).

    Article  CAS  Google Scholar 

  32. Leevers, S.J., Weinkove, D., MacDougall, L.K., Hafen, E. & Waterfield, M.D. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J. 15, 6584–6594 (1996).

    Article  CAS  Google Scholar 

  33. Zhang, H., Stallock, J.P., Ng, J.C., Reinhard, C. & Neufeld, T.P. Regulation of cellular growth by the Drosophila target of rapamycin dTOR. Genes Dev. 14, 2712–2724 (2000).

    Article  CAS  Google Scholar 

  34. Montagne, J. et al. Drosophila S6 kinase: a regulator of cell size. Science 285, 2126–2129 (1999).

    Article  CAS  Google Scholar 

  35. Pullen, N. et al. Phosphorylation and activation of p70s6k by PDK1. Science 279, 707–710 (1998).

    Article  CAS  Google Scholar 

  36. Nave, B.T., Ouwens, M., Withers, D.J., Alessi, D.R. & Shepherd, P.R. Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344, 427–431 (1999).

    Article  CAS  Google Scholar 

  37. Scott, P.H., Brunn, G.J., Kohn, A.D., Roth, R.A. and Lawrence J.C. Jr Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc. Natl Acad. Sci. USA 95, 7772–7777 (1998).

    Article  CAS  Google Scholar 

  38. Reynolds, T.H.t., Bodine, S.C. & Lawrence, J.C. Jr. Control of Ser 2448 phosphorylation in the mammalian target of rapamycin by insulin and skeletal muscle load. J. Biol. Chem. 277, 17657–17662 (2002).

    Article  CAS  Google Scholar 

  39. Inoki, K., Li, Y., Zhu, T., Wu, J. & Guan, K.L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nature Cell Biol. 4, 648–657 (2002).

    Article  CAS  Google Scholar 

  40. Tee, A.R. et al. Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc. Natl Acad. Sci. USA 99, 13571–13576 (2002).

    Article  CAS  Google Scholar 

  41. von Manteuffel, S.R., Gingras, A.C., Ming, X.F., Sonenberg, N. & Thomas, G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA 93, 4076–4080 (1996).

    Article  CAS  Google Scholar 

  42. Hara, K. et al. Regulation of eIF-4E BP1 phosphorylation by mTOR. J. Biol. Chem. 272, 26457–26463 (1997).

    Article  CAS  Google Scholar 

  43. Miron, M. et al. The translational inhibitor 4E-BP is an effector of PI(3)K/Akt signalling and cell growth in Drosophila. Nature Cell Biol. 3, 596–601 (2001).

    Article  CAS  Google Scholar 

  44. Cross, D.A., Alessi, D.R., Cohen, P., Andjelkovich, M. & Hemmings, B.A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785–789 (1995).

    Article  CAS  Google Scholar 

  45. Hinkle, R.T. et al. Skeletal muscle hypertrophy and anti-atrophy effects of clenbuterol are mediated by the β2-adrenergic receptor. Muscle Nerve 25, 729–734 (2002).

    Article  CAS  Google Scholar 

  46. Crespo, P., Xu, N., Simonds, W.F. & Gutkind, J.S. Ras-dependent activation of MAP kinase pathway mediated by G-protein βg subunits. Nature 369, 418–420 (1994).

    Article  CAS  Google Scholar 

  47. Lecker, S.H. et al. Ubiquitin conjugation by the N-end rule pathway and mRNAs for its components increase in muscles of diabetic rats. J. Clin. Invest. 104, 1411–1420 (1999).

    Article  CAS  Google Scholar 

  48. Attaix, D., Combaret, L., Pouch, M.N. & Taillandier, D. Regulation of proteolysis. Curr. Opin. Clin. Nutr. Metab. Care 4, 45–9 (2001).

    Article  CAS  Google Scholar 

  49. Gomes, M.D., Lecker, S.H., Jagoe, R.T., Navon, A. & Goldberg, A.L. Atrogin-1, a muscle-specific F-box protein highly expressed during muscle atrophy. Proc. Natl Acad. Sci. USA 98, 14440–14445 (2001).

    Article  CAS  Google Scholar 

  50. Bodine, S.C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    Article  CAS  Google Scholar 

  51. Centner, T. et al. Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain. J. Mol. Biol. 306, 717–726 (2001).

    Article  CAS  Google Scholar 

  52. McElhinny, A.S., Kakinuma, K., Sorimachi, H., Labeit, S. & Gregorio, C.C. Muscle-specific RING finger-1 interacts with titin to regulate sarcomeric M-line and thick filament structure and may have nuclear functions via its interaction with glucocorticoid modulatory element binding protein-1. J. Cell Biol. 157, 125–136 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to L. S. Schleifer, P. R. Vagelos and G. D. Yancopoulos for enthusiastic support and critical guidance, and to the Regeneron community for their support. Thanks to colleagues at Procter & Gamble Pharmaceuticals for their support and for enthusiastic scientific collaboration, particularly R. Isfort. Particular thanks to G. Thurston for editing this manuscript. T. Stitt, M. Gonzalez, E. Latres, S. Stevens, M. Sleeman and K-L Lai also provided useful edits. Sincere apologies to scientific colleagues whose work was omitted from this perspective as a result of space constraints.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glass, D. Signalling pathways that mediate skeletal muscle hypertrophy and atrophy. Nat Cell Biol 5, 87–90 (2003). https://doi.org/10.1038/ncb0203-87

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0203-87

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing